

HEN5CHEL LOKOMOTIV-TASCHENBUCH

AUSGABE 1952

HENSCHEL&SOHN # KASSEL

KI. KAMA, 1956.

HENSCHEL

LOKOMOTIV-TASCHENBUCH

AUSGARF 1952

Alle Rechte vorbehalten, insbesondere das Recht der Übersetzung in fremde Sprachen.

Copyright by Henschel & Sohn GmbH, Kassel, Germany 1952

HENSEHEL SOHN = KASSEL

ZUM GELEIT

Viele Freunde des Hauses Henschel im In- und Ausland haben den Wunsch ausgesprochen, das 1935 letztmalig erschienene Henschel-Lokomotiv-Taschenbuch möge neu aufgelegt werden. Ich komme diesem Wunsch um so lieber nach, als das Haus Henschel nicht nur auf eine Tradition von über 100 Jahren im Lokomotivbau zurückblicken kann, sondern diesen Lokomotivbau auch als einen Eckpfeiler des Unternehmens betrachten muß, dessen Grundlagen bereits weitere zweieinhalb Jahrhunderte zuvor im Hause Henschel zu finden sind.

Meine Vorfahren haben schon seit Anfang des 17. Jahrhunderts den Stück- und Glockenguß erfolgreich betrieben. Bei dem Kommen des technischen Zeitalters war die Familie Henschel bereits 1777 in Kassel mit einem Gießereiunternehmen verankert.

In der Folgezeit entstanden Henschel-Feuerspritzen, Hochöfen, Werkzeugmaschinen, Brückenkonstruktionen, Kunstgußarbeiten, maschinelle Ausrüstungen für den Bergbau und das Salinenwesen, Wasserturbinen, Wassersäulengebläse, Druckpressen, Dampfkessel und u. a. Dampfmaschinen.

Aus diesem mannigfaltigen Arbeitsbereich, dessen technische Grundlagen im 17. und 18. Jahrhundert zum Teil erst geschaffen werden mußten, kristallisierte sich seit Mitte des 19. Jahrhunderts der Lokomotivbau als tragende Säule des Werkes heraus und begründete die Weltgeltung des Hauses Henschel & Sohn.

Die fortschreitende Entwicklung des Verkehrswesens legte den Gedanken nahe, daß sich das Haus Henschel außer dem Bau von Schienenfahrzeugen auch dem von Straßen-Verkehrsmitteln zuwandte. So wuchs seit rund 30 Jahren als zweite Säule des Unternehmens der Henschel-Kraftwagenbau zu seiner heutigen Bedeutung heran.

Das vorliegende Buch soll nun unter Berücksichtigung des Henschel-Lokomotivbaus das Gesamtgebiet der Zugförderung behandeln. Damit will es dem Eisenbahn-Fachmann ein wertvolles Hilfsmittel und allen Freunden des Eisenbahnwesens sowie dem technischen Nachwuchs ein willkommener Berater sein.

Un - A. Him dul.

Kassel, im September 1952

INHALT

	Selte
Die Henschel-Werke	9
Die Triebfahrzeuge auf der Schiene	17
Die verschiedenen Zugförderungssysteme	19
Bestimmungen	25
Bindungen an die Fahrstrecke	28
Kennzeichnung der Triebfahrzeuge	44
Grundlagen zur Ermittlung der Hauptab- messungen / Widerstände / Reibungszug- kraft / Schlepplasten	
Fahrzeuglauf	68
Rahmen / Abfederung / Bremse	87
Die Kolbendampflokomotive	99
Ermittlung der Hauptabmessungen	101
Gelenklokomotiven	149
Amerikanische Lokomotivberechnung	152
Abmessungen ausgeführter Dampflokomotiven	164
Bauliche Einzelheiten	179
Sonderbauarten von Dampf-Fahrzeugen	235
Der elektrische Zugbetrieb	257
Die Zugförderung mit Verbrennungsmotor	271
Zahlentafeln	285
Stichworte	340
Bildtafeln	353

Die

HENSCHEL&SOHN # KASSEL

stützt sich bei Berücksichtigung der von der R. Wolf AG, Abteilung Lokomotivfabrik Hagans in Erfurt, von den Linke-Hofmann-Busch-Werken in Breslau und von der Hanomag, Hannover-Linden, erworbenen Anteile auf die Erfahrung des Baues und Betriebes von

mehr als 45000 Lokomotiven.

Von den im eigenen Hause erbauten Lokomotiven sind über 20500 für das Inland bestimmt gewesen, darunter bis Mitte 1952 über 13200 für deutsche Staatsbahnen.

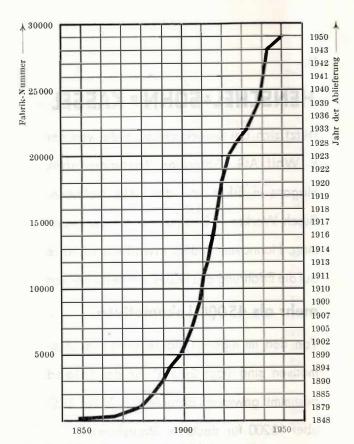


Bild 1. Entwicklung des Henschel-Lokomotivbaues dargestellt nach den Stückzahlen der abgelieferten Lokomotiven

Über 7600 Henschel-Lokomotiven sind bis Mitte 1952 ins Ausland geliefert worden. Von diesen gingen

1103 nach Italien und ehem. Kolonien	325 nach der Türkei
633 nach Indien	320 nach Rußland235 nach Portugalu. Kolonien
530 nach Holland und ehem.	223 nach Chile
528 nach Frankreich und	213 nach Brasilien
Kolonien 462 nach Südafrika	212 nach Dänemark 197 nach Jugoslawien
443 nach Argentinien	173 nach Ägypten
400 in die ehem. Österr Ungarische Monarchie	151 nach China und der Mandschurei
398 nach Rumänien	142 nach Japan
397 nach Spanien und	126 nach Bulgarien
Kolonien	100 nach Ungarn (seit 1919)

Henschel exportierte erstmalig nach

Holland im Jahre 1857	Türkei im Jahre 1895
Italien im Jahre 1876	Schweiz im Jahre 1896
Rumänien im Jahre 1878	Ägypten im Jahre 1901
Portugal im Jahre 1878	Indonesien im Jahre 1901
Rußland im Jahre 1878	Spanien im Jahre 1903
Dänemark im Jahre 1879	Südafrika im Jahre 1903
Frankreich im Jahre 1883	Japan im Jahre 1904
Österreich im Jahre 1883	Portug. Afrika im Jahre 1905
Argentinien im Jahre 1886	Mexiko im Jahre 1907
China im Jahre 1886	Bulgarien im Jahre 1908
Serbien im Jahre 1886	Norwegen im Jahre 1908
Ungarn im Jahre 1886	Brasilien im Jahre 1909
Chile im Jahre 1888	Siam im Jahre 1909
Luxemburg im Jahre 1892	Indien im Jahre 1913

Einige der Henschelschen Serien-Lokomotivtypen haben eine verhältnismäßig hohe Stückzahl erreicht. So wurden bisher gebaut

über 110 Stück von der 250 PS-Industrielokomotive

125 Stück von der 200 PS-Industrielokomotive

132 Stück von der 125 PS-Industrielokomotive

145 Stück von der 270 PS-Industrielokomotive

200 Stück von der 250 PS-Baulokomotive

213 Stück von der 40 PS-Baulokomotive

236 Stück von der 400 PS-Industrielokomotive

237 Stück von der 90 PS-Baulokomotive

263 Stück von der 200 PS-Baulokomotive

360 Stück von der 70 PS-Baulokomotive

390 Stück von der 125 PS-Baulokomotive

500 Stück von der 50 PS-Baulokomotive

550 Stück von der 30 PS-Diesel-Lokomotive DG 26

659 Stück von der 160 PS-Baulokomotive

674 Stück von der 60 PS-Baulokomotive

750 Stück von der 15 PS-Diesel-Lokomotive DG 13

Henschel erhaute

- 1848 seine erste Lokomotive, die 2B-Personenzug-Lokomotive "Drache" für die Hessische Friedrich Wilhelms-Nordbahn
- 1892 seine erste Schneeschleuder-Maschine, bestimmt für die Direktion Hannover der Kgl. Preußischen Staatsbahnen
- 1898 eine der beiden ersten Schmidt-Heißdampf-Lokomotiven, Gattung P4¹ der Kgl. Preußischen Staatsbahnen
- 1904 die 2 B2- Schnellbahn-Lokomotive der Kgl. Preußischen Staatsbahnen

- 1917 die erste Einheits-Lokomotive, Gattung G 12, die von verschiedenen deutschen Länderbahnen verwendet wurde
- 1925 die erste Hochdruck-Lokomotive, die 2C-Dreizylinder-Verbund-Schnellzug-Lokomotive H 17 206 der Deutschen Reichsbahn
- 1926 die 2C Heißdampf Zwilling Personenzug Lokomotive T 38 3255 mit 1B 2 - Abdampfturbinen - Triebtender der Deutschen Reichsbahn
- 1928 die ersten Kohlenstaubfeuerungs-Lokomotiven der Bauart "Stug", Gattung G12 der Deutschen Reichsbahn
- 1931 die erste Henschel-Kondens-Lokomotive, bestimmt für die Argentinischen Staatsbahnen
- 1933 den ersten Schnell-Triebwagen mit Hochdruck-Dampfanlage und selbsttätiger Kesselregelung, bestimmt für die Lübeck-Büchener Eisenbahn-Gesellschaft
- 1933 die erste elektrische Schnellzug-Lokomotive für 130 km/h Höchstgeschwindigkeit mit Einzelachs-Antrieb durch Tatzenlager-Motoren, Reihe E 05 der Deutschen Reichsbahn. — Elektrischer Teil: SSW, Berlin
- 1935 die elektrische 75 t-Tagebau-Lokomotive für 900 mm Spur der Riebeckschen Montanwerke A.G., Grube von der Heydt
- 1935 die Stromlinien-Tender-Lokomotive für den Lübeck-Büchener Doppeldeck-Stromlinienzug, den ersten deutschen Dampfzug für Zug- und Schiebebetrieb
- 1938 die Diesel-elektrische 4400 PS-Schnellzug-Lokomotive der Rumänischen Staatsbahnen. — Dieselmotoren: Gebr. Sulzer A.G., Winterthur. — Elektrischer Teil: BBC, Baden/Schweiz

- 1939 die 450 PS-Dampf-Tagebau-Lokomotive für 900 mm Spur (Gelenk-Bauart Henschel) für die Grube Phönix der Aktiengesellschaft für Braunkohlenverwertung, Mumsdorf/Thür.
- 1939 die elektrische 150 t-Lokomotive für 1435 mm Spur mit 25 t Achsdruck der Riebeckschen Montanwerke AG. Otto-Scharf-Grube. — Elektrischer Teil: SSW, Berlin
- 1939 die elektrische 6500/8000 PS Schnellfahr Lokomotive Reihe E 19 der Deutschen Reichsbahn. - Elektrischer Teil: SSW. Berlin
- 1941 die 1 Dol Stromlinien-Dampf-Lokomotive mit Einzelachsantrieb, Betr.-Nr. 19 1001 der Deutschen Reichsbahn
- 1943 die erste Kondens-Lokomotive der Deutschen Reichsbahn
- 1950 eine meterspurige 300 PS-Einrahmen-Tender-Lokomotive für eine Gleiskrümmung von nur 15 m Halbmesser
- 1950 die beiden ersten Neubau-Typen der Deutschen Bundesbahn: die E-Heißdampf-Güterzug- und Verschiebe-Tenderlokomotive Reihe 82 für 70 km/h Höchstgeschwindigkeit und die 1C1 - Heißdampf - Personenzug-Lokomotive, neue Reihe 23
- 1951 die 1E-Güterzug-Lokomotive mit Franco-Crosti-Vorwärmer Reihe 4290 der Deutschen Bundesbahn

Das lokomotivtechnische Arbeitsgebiet

HENSCHEL&SOHN # KASSEL

LOKOMOTIVEN aller Größen - Spurweiten - Antriebsarten

Gefeuerte Dampflokomotiven Feuerlose Dampf-Lokomotiven Hochdruck-Dampf-Lokomotiven Elektrische Lokomotiven Diesel-elektrische Lokomotiven Diesel-hydraulische Lokomotiven Diesel-mechanische Lokomotiven Schneeschleudern Schnee-Räumer Schnee-Pflüge

Motor-Triebwagen

Dampf-Triebwagen ferner

Brennstaub-Feuerungen für Lokomotiven Ölfeuerungs-Anlagen für Lokomotiven Elektrische Beleuchtungs-Anlagen einschl. Turbogeneratoren für Dampffahrzeuge Anlagen zur Rückgewinnung des Speisewassers (Kondens-Lokomotiven) Kuprodur-Feuerbuchsen Stehbolzen (insbes. Bauarten "Henschel" u. "Troß-Henschel") Schüttelrost Bauart "Henschel" Mischvorwärmer Bauart "Henschel" Kreiselpumpen Bauart "Henschel" für Kesselspeisung Nicht saugende Dampfstrahlpumpen Dampfläutewerke Bauart ..Latowsky" Sicherheits-Ventile Bauart "Ackermann"

Ersatzteile

Instandsetzung von Lokomotiven und Kesseln

HOCHDRUCK-DAMPFANLAGEN

Sonstige Arbeitsgebiete

KRAFTWAGEN

Schwerlastwagen

Sonder-Fahrzeuge aller Art, wie

Motorhydraulische Kipper . Sattelschlepper . Sprengwagen . Fäkalienwagen . Schlammsaugewagen . Müllwagen . Kraftstoff-Kesselwagen . Feuerwehrfahrzeuge Omnibusse für 30—90 Personen (mit Anhängerbetrieb bis zu 150 Personen)

Oberleitungs-Omnibusse für 90 (mit Anhängerbetrieb für 150) Personen

Einbau-Diesel-Motoren für Lastkraftwagen und Omnibusse Einbau-Diesel-Motoren für Schlepper und ortsfeste Anlagen

Ersatzteile für

Henschel-Lastkraftwagen, Henschel-Omnibusse, Henschel-Obusse, GMC-Lastkraftwagen

Instandsetzung von Kraftfahrzeugen und Motoren

STRASSENBAU-MASCHINEN

Dampf- und Dieselmotor-Dreiradwalzen, Dieselmotor-Tandemwalzen, Straßenaufreißer, sonstige Zubehör-Fahrzeuge

INDUSTRIE-MOTOREN

zum Einbau in Fahrzeuge aller Art, sowie für ortsfeste Anlagen von 12—140 PS

ALLGEMEINER MASCHINENBAU

Werkzeugmaschinen, Werkzeuge und Vorrichtungen, Zahnräder und Getriebe, Kessel und Behälter, Schweißkonstruktionen, Grauguß, Freiform- und Gesenkschmiedestücke, Preßteile

Die Triebfahrzeuge auf der Schiene

Man unterscheidet

Lokomotiven = Triebfahrzeuge, die ausschließlich der Beförderung des angehängten Wagenzuges, der Schlepplast, dienen, also keine Nutzlast mit sich führen.

Trlebwagen = Triebfahrzeuge, die zusätzlich zur Krafterzeugungsanlage und den Kraftübertragungsorganen mit Einrichtungen zur Beförderung von Nutzlast (Personen oder Gütern) versehen sind. In beschränktem Umfange können sie auch zum Befördern einer Schlepplast (Anhänger) herangezogen werden.

Eine Sondergattung der Triebwagen bildet der Schienenomnibus, der durch Übertragen der Baugrundsätze der Straßenfahrzeuge auf das Schienenfahrzeug entstanden ist.

Unter Triebzug versteht man einen Zug, der sich aus einem oder mehreren Triebwagen und einer entsprechenden Zahl von Anhängern zusammensetzt.

Für den

Antrieb der Triebfahrzeuge

stehen vorzugsweise zur Verfügung

die Kolbendampimaschine mit unmittelbarem Antrieb der Treibräder

der **Dampfmotor** (schnellaufende Dampfmaschine)

die Dampsturbine

der Verbrennungsmotor, insbesondere der Dieselmotor mit mechanischer, elektrischer oder hydraulischer Kraftübertragung

der Elektromotor

Für die Zukunft werden als weitere Antriebsmittel hinzutreten

die Gasturbine
die Kohlenstaubturbine

mit mechanischer, elektrischer oder hydraulischer Kraftübertragung

Die Kolbendampflokomotive bestreitet gegenwärtig schätzungsweise noch etwa 80÷90 % der gesamten Zugförderung auf der Schiene.

Die elektrische Zugtörderung umfaßt nach dem Stand von Anfang 1952 von den Strecken

der	USA insgesamt	etwa	2,0	%	
der	Dänischen Staatsbahnen		2,2	%	
der	Ungarischen Staatsbahnen		3,3	%	
der	Belgischen Nationalbahnen	31	3,5	%	
der	Siidafrikanischen Staatsbahnen	**	4,4	%	
der	Britischen Eisenbahnen		4,7		
der	Deutschen Bundesbahn	**	5,7	%	
der	Chikago, Milwaukee, St. Paul & Pacific Ry		6,2		
der	Spanischen Nationalbahnen	**	6,5	%	
der	Pennsylvania Railroad		7,6	%	
der	Französischen Nationalbahnen (SNCF)	30.	10,0	%	
der	Österreichischen Bundesbahnen	300	19,3		
der	Virginian Railway, USA		20,7	-	
der	Norwegischen Staatsbahnen		20,8		
der	Niederländischen Eisenbahnen	11	27,6	-	
der	Italienischen Staatsbahnen	100	34,8	, 0	
der	Schwedischen Staatsbahnen	***	41,0		
der	Paulista-Bahn, Brasilien	1	47,0		
	Marokkanischen Eisenbahn-Gesellschaft	10		70	
	(franz. Marokko)	55	52,0	%	
der	Bahnen in der Schweiz insgesamt	**	90,0	%	
der	Schweizerischen Bundesbahnen	- 11	100,0	%	

Die Motorzugförderung hat in den USA eine entscheidende Bedeutung erlangt. Es beträgt dort (Anfang 1952) der Anteil der Diesel-elektrischen Lokomotive am gesamten Lokbestand nach der Stückzahl etwa 25 %, an den Verkehrsleistungen der Vollbahnen im Strecken- und Verschiebedienst etwa 59 %. In den Jahren 1951/52 wurden für USA-Vollbahnen keine Dampflokomotiven beschafft.

Das Gebiet kleiner Leistungseinheiten (bis zu etwa 50 PS) ist eine fast unumstrittene Domäne der Motorlokomotive geworden. Diese zeigt sich hier der Dampflokomotive durch geringeren Beschaftungspreis, höhere Zugkraft bei geringen Geschwindigkeiten (bis zu etwa 4÷6 km/h) und Wegfall des Bereitschaftsverbrauches überlegen.

Auf leichten Plantagenbahnen in Übersee hat sich die Dampflokomotive in gewissem Umfang auch in diesen kleinen Einheiten behauptet, da der Brennstoff hier vielfach als Abfallprodukt zur Verfügung steht (Holz, Zuckerrohr, Zuckerrohr-Rückstände (Ampass, Bagasse), Fruchtrückstände, Palmkernschalen).

Beurteilung der verschiedenen Zugförderungs-Systeme

Überschlägige Angaben

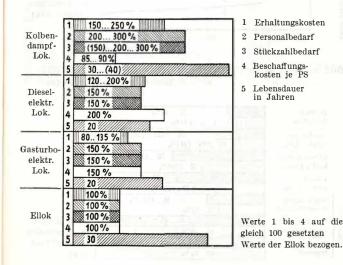


Bild 2. Größenordnung der Wirtschaftlichkeitszahlen

Nach Kother in "Eisenbahntechnik" 1949, S. 91

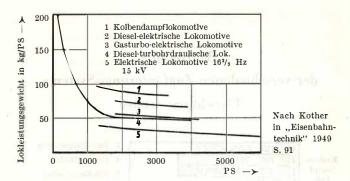


Bild 3. Lokomotivleistungsgewicht je Treibrad-Dauerleistung Tendenz in Europa 1939-1949

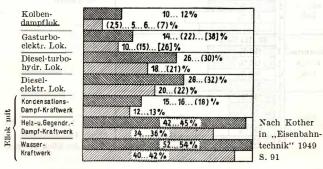


Bild 4. Höchst- und Jahreswirkungsgrade zwischen Rohenergie und Lokomotivtreibrad

Höchstwirkungsgrade Jahreswirkungsgrade

(....) = seltener vorkommende Werte

[....] = wahrscheinlich technisch erreichbare Grenzwerte

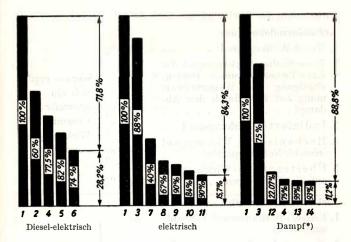


Bild 5. Gesamtwirkungsgrad der verschiedenen Antriebsarten Nach Dugas in MTZ Beiheft 1 (1949) S. 3

1 Kraftstoff

2 Theoretischer Wirkungsgrad des Dlesel-Kreis-Prozesses (für ein volumetrisches Verdichtungsverhältnis von 16)

3 Kesselwirkungsgrad

4 Indizierter Wirkungsgrad

Mechanischer Wirkungsgrad des Motors (einschließlich Neben-Apparate)

6 Übertragungs-Wirkungsgrad auf die Achsen

Theoretischer Wirkunsgrad des Kreis-Prozesses 8 Indizierter Wirkungsgrad und mechanische und elektrische Wirkungsgrade

des gesamten Turbo-Wechselstrom-Umformers (einschl. Nebenapparate) Wirkungsgrad der Übertragung zwischen dem Werk und der Unterstation

10 Umformer-Wirkungsgrad und Energieübertragungs-Wirkungsgrad zwischen dem Eintritt in die Unterstationen und dem Stromabnehmer einschließlich

der Stromrücklauf verluste 11 Elektro-mechanischer Wirkungsgrad der Lokomotive an den Treibachsen

12 Theoretischer Wirkungsgrad des Kreis-Prozesses

13 Mechanischer Wirkungsgrad (einschl. Nebenapparate)

14 Ubertragungs-Wirkungsgrad auf die Achsen

*) Verbundlok für 20 atü, Überhitzung auf 400° C, vollkommener Auspuff, Speisewasser-Vorwärmung

	2.1.1	-	
Unterteilung der Wirkungsgrade nach	31ld e	9	
Kolbendampflokomotive			
1. Kessel-Wirkungsgrad	75	%)	
2. Theoretischer Wirkungsgrad des Kreis-Prozesses, unter Berück- sichtigung der Wasservorwär- mung auf 100° durch den Ab- dampf	00.1	0/	hieraus ergibt sich ein optimaler
1	22,1		Gesamt-
3. Indizierter Wirkungsgrad	75	%	Wirkungsgrad
4. Mechanischer Wirkungsgrad (einschl. Nebenapparate)	95	0//0	von 11,2 %
5. Übertragungs-Wirkungsgrad auf die Treibachsen 90-	-95	%	
Elektrische Lokomotive			
 Kessel-Wirkungsgrad (Dampf- kraftwerk) 	88	%)	
2. Theoretischer Wirkungsgrad des Kreis-Prozesses 39	40	0//0	
3. Indizierter Wirkungsgrad einschl. mechanischem und elektrischem Wirkungsgrad des gesamten Turbo-Wechselstrom-Umformers (einschl. Nebenapparate)	67	0/	hieraus ergibt
4. Wirkungsgrad der Übertragung			sich ein
zwischen dem Werk und der		}	Gesamt-
Unterstation	90	%	Wirkungsgrad
5. Umformer - Wirkungsgrad und Energieübertragungs - Wirkungs- grad zwischen dem Eintritt in die Unterstationen und dem Strom-			von 15,7 %
Abnehmer einschl. der Strom- ricklauf-Verluste	84	0/0	
6. Elektro-mechanischer Wirkungsgrad der Lokomotive an den	OT.	/0	
Treibachsen	90	%]	

Dieselelektrische Lokomotive

1. Theoretischer Wirkungsgrad des	
Diesel-Kreis-Prozesses (für ein	
volumetrisches Verdichtungs-	hieraus ergibt
Verhältnis von 16)	sich ein
2. Indizierter Wirkungsgrad 77,5 %	Gesamt-
3. Mechanischer Wirkungsgrad des	Wirkungsgrad
Motors (einschl. Nebenapparate) 82 %	von 28,2 %
4. Übertragungs-Wirkungsgrad auf	Distance III - II-
die Achsen 74 %	

Vergleichsweise Bewertung der verschiedenen Zugförderungsarten (nach Kiefer, "New York Central Bahn, 1947", Bericht von Wolff, Glasers Annalen 72, 1948, S. 1).

Zahlentafel 1

Wichtigste	Erfüllung der Betriebseigenschaften in %											
Betriebseigenschaften	Kolben- dampf- lok	Diesel- elektr.	Diesel- hy d rau- lisch	Gasturbo- elektr.	Wechsel- strom- lok							
Freiheit von Rauch-	d plan	Y Your	obne:	peck								
gasen	0	90 95	90 95	9095	100							
Unabhängigkeit von ortsfesten Anlagen	80	95	95	98	0							
Energiewirtschaftlich-	25 40	05 100	05 400	00 /05 100	100							
keit	25 40	95100	95100	60(95100)	100							
Mögliche Zuggewichte	25 50	25 60	30 65	30 65	100							
Steigungs- und Beschleunigungs-	ERI		ell some		100							
vermëgen	25 50	40 60	45 65	45 65	100							
Reisegeschwindigkeit:												
Ebene	90 75	100 80	100 80	100 80	100							
Hügelland	60 50	80 70	80 65	80 70	100							
Gebirge	40 20	60 40	55 35	60 40	90 70							
Wirtschaftlichkeit:			10000									
Verkehrs- klein .	60100	80100	75100	90100	60 90							
stärke mittel	100 75	100 90	100 90	100	90 98							
groß .	75 60	80 70	80 70	100 80	95100							
Ausnutzungsmöglich- keit der Strecken- und	JUPOn 1				1							
Endbahnhöfe	35, 50	50 70	50 70	50 70	100							

Entwurf und Bau von Lokomotiven und Triebwagen

sind im wesentlichen bedingt durch

die Spurweite

den zulässigen Achsdruck

die zugelassene Fahrzeug-Umgrenzung

die Betriebsbedingungen und damit die geforderten Leistungen und Zugkräfte (abhängig von Schlepplast und Fahrgeschwindigkeit)

die vorliegenden Streckenverhältnisse (Steigungen, Krümmungen, Tragfähigkeit der Kunstbauten, Größe der Drehscheiben und Schiebebühnen, Entfernung Wasser- und Brennstoff-Speisepunkte voneinander)

die Beschaffenheit von Wasser und Brennstoff

die geforderte Fahrgeschwindigkeit sowie die zugelassene Höchstgeschwindigkeit

die gesetzlichen und polizeilichen Bestimmungen über den Bau und den Betrieb von Lokomotiven.

Angebote und Entwürfe

stützen sich auf die Kenntnis der Betriebsbedingungen, die durch folgende Punkte gekennzeichnet sind: a) allgemein

- 1. Art des Betriebes (Dampf. Elektrizität oder Verbrennungsmotor; Lokomotive oder Triebwagen)
- 2. Anzahl der anzubietenden Triebfahrzeuge

3. Spurweite

4. Zulässige Umgrenzungsmaße des Fahrzeuges

- 5. Zulässiger Gesamt-Achsstand, sonst Durchmesser der Drehscheiben 6. Zulässiger Achsdruck, sonst Schienengewicht in kg/m bzw. Widerstandsmoment des Schienenguerschnittes, ferner Schwellenabstand von Mitte zu Mitte
- 7. Streckenplan mit Steigungen und Gleiskrümmungen, sonst: Länge der Bahnstrecke, größte Steigung sowie Länge dieser Steigung, kleinster Krümmungshalbmesser sowie zugehörige Spurerweiterung, Halbmesser und Länge von Gleisbögen, die in starken Steigungen liegen. - Größe dieser Steigungen, ungunstigste Weiche

8. Zulässiges Metergewicht des Fahrzeuges bzw. sonstige Vorschriften über das Befahren von Brücken

9. Art und Höhenlage der Zug- und Stoßvorrichtungen

10. Verwendungszweck und vorgesehenes Betriebsprogramm des Fahrzeuges, möglichst Dienstfahrplan mit Angabe der jeweiligen Schlepplast (Wagengewicht + Nutzlast) und Fahrgeschwindigkeit,

sonst: Schlepplast und Geschwindigkeit a) auf ebener Strecke b) auf größter Steigung

11. Größte Fahrgeschwindigkeit

12. Nähere Angaben über gewünschte Ausrüstung bzw. Sondereinricht ungen (wie Bremse, Heizung, Beleuchtung, Wälzlager u. a.)

b) zusätzlich für weferrerte Dampflokomotiven

1. Bauart (Tender- oder Schlepptenderlokomotive, Straßenbahnlokomotive, Abraumlokomotive, Zwilling-, Drilling-, Vierling- oder Verbundlokomotive, Heißdampf- oder Naßdampflokomotive, Gelenklokomotive nach Mallet, Garratt usw.)

2. Sonderausrüstung (Vorwärmer, Schüttelrost, Kraftumsteuerung, usw.)

3. Angaben über Speisewasser und Brennstoff (Heizwert!)

4. Wasser- und Brennstoffvorräte der Lokomotive, sonst Entfernung der Wasser- und Brennstoff-Speisepunkte voneinander

c) zusätzlich für feuerlose Lokomotiven: siehe S. 250

d) zusätzlich für elektrische Lokomotiven

1. Betriebsart (Fahrleit ungsbetrieb. Speicherbetrieb, oder beides in einem Fahrzeug vereinigt)

2. Fahrleitung (Oberleitung, dritte Schiene, sonstige Anordnung)

3. Stromart (Gleichstrom, Wechselstrom, Drehstrom: Fahrleitungsspannung, Anzahl der Phasen und Perioden) 4. Tägliche Betriebsdauer

5. Nur für Speicherfahrzeuge: Kapazität (Betriebsdauer) für eine Ladung

c) zusätzlich für Verbrennungsmotor-Fahrzeuge

1. Bauart der Antriebsmaschine (Vergasermotor oder Dieselmotor) 2. Brennstoff (Schweröl, Benzin, Flüssiggas, Sauggas, Reichgas)

3. Höhenlage der Bahnstrecke über Meeresspiegel

4. Kraftübertragung (mechanisch, elektrisch oder hydraulisch).

Grundlegende Bestimmungen betreffend Bau und Betrieb von Dampflokomotiven in Deutschland

- 1. für Lokomotiven auf Bahnen des allgemeinen Verkehrs1)
 - Eisenbahn-Bau- und Betriebsordnung (BO) vom 17.7. 1928, letzte Ausgabe vom 1.3.1943
 - Eisenbahn-Bau- und Betriebsordnung für Schmalspurbahnen (BOS) vom 1.8.1943
 - Eisenbahn-Signalordnung (ESO) vom 1.8. 1935, zusammen mit den Ausf.-Bestimmungen vereinigt im Signalbuch (SB)
 - Technische Vereinbarungen über den Bau und den Betrieb der Haupt- und Nebenbahnen (TV) vom 1.12.19302)

¹⁾ Bahnen "des allgemeinen Verkehrs" sind solche, für welche die BO gilt. Ihr wesentliches Merkmal kann darin gesehen werden, daß sie nicht nur dem öffentlichen Verkehr dienen, sondern auch Anteil am allgemeinen Verkehr haben. Bei Privatbahnen ist diese Voraussetzung gegeben, wenn sie unmittelbaren Anschluß - wenn auch mit Umsteigen oder Umladen - an das Netz der Deutschen Bundesbahn besitzen, oder wenn sie für sich allein eine so

e) Grundzüge für den Bau und den Betrieb der Lokalbahnen (Grz) vom 1.12. 1930²)

Technische Einheit im Eisenbahnwesen (TE) Fassung 1938³)

g) Übereinkommen über die gegenseitige Benutzung der Personen- und Gepäckwagen im Bereich des Vereins Mitteleurop. Eisenb.-Verw. (VPÜ) vom 1.10.1938²)³)

h) Übereinkommen über die gegenseitige Benutzung der Personen- und Gepäckwagen im internationalen Verkehr

(RIC) vom 1. 10. 1938³)

 Übereinkommen über die gegenseitige Benutzung der Güterwagen im Bereiche des Vereins Mitteleuropäischer Eisenbalm-Verwaltungen (VWÜ) vom 1. 1. 1935, letzte Ausgabe vom Oktober 1941²)³)

Übereinkommen über die gegenseitige Benutzung der Güterwagen im intern. Verkehr (RIV) vom 1. 1. 1948³)

 k) Verzeichnis der zulässigen Achslasten und Meterlasten für Wagen (VAM) vom 20. 5. 1951³)⁴)

2. für Lokomotiven der Deutschen Bundesbahn

a) bis e) und k) wie oben.

l) Verdingungsordnung für Leistungen (ausgenommen Bauleistungen) (VOL)

m) Besondere Bedingungen für die Lieferung von Dampflokomotiven, Tendern und Ersatzteilen

n) Toleranzvorschriften für Dampflokomotiven

Richtlinien für das Vermessen von Lokomotiven

p) Vorläufiges Baustoffverzeichnis für Lokomotiven und Tender

 q) Lieferungs- und Fertigungsbedingungen (jeweils für die einzelnen beim Bau der Lokomotiven und Tender verwendeten Werkstoffe und Einzelteile)

große Ausdehnung haben, daß ihre Bedeutung über diejenige einer rein örtlichen Einrichtung hinausgeht.

Bahnen des allgemeinen Verkehrs sind demzufolge alle voll- und schmalspurigen Bahnen der Deutschen Bundesbahn und der Deutschen Reichsbahn. Ausgenommen sind einige kurze Strecken von zusammen 60 km Länge in den Elsenbahndirektionsbezirken Hamburg, Kassel, Köln, Münster und Schwerfin.

3. für Lokomotiven auf Bahnen des ${m nicht}$ allgemeinen öffentlichen Verkehrs $^5)$

e) und k), soweit im Einzelfall in Betracht kommend

- v) Vereinfachte Eisenbahn-Bau- und Betriebsordnung (vBO) vom 10. 2. 1943
- s) Vereinfachte Eisenbahn-Bau- und Betriebsordnung für Schmalspurbahnen (vBOS) vom 25. 7. 1943
- t) Vereinfachte Eisenbahn-Signalordnung (vESO) vom 15.4. 1943, veröffentlicht im vereinfachten Signalbuch (vSB)
- u) Gesetz über Kleinbahnen und Privatanschlußbahnen vom 18. 7. 1892 mit Ausführungsanweisung vom 13. 8. 1898*)
- uu) Bau- und Betriebs-Vorschriften für nebenbahnähnliche Kleinbahnen mit Maschinenbetrieb vom 15. 1. 1914 °)

für Lokomotiven auf Bahnen des nicht allgemeinen nicht öffentlichen Verkehrs⁵)

u) und uu) wie oben

- v) Allgemeine polizeiliche Bestimmungen über die Anlegung von Landdampfkesseln vom 17. 12. 1908. — Über zugelassene Ausnahmen siehe "Bundesanzeiger" 19/1952
- w) Werkstoff- und Bauvorschriften für Landdampfkessel vom 18. 6. 1926, letzte Ausgabe vom September 1929
- x) Vorschriften über die Behandlung der Dampfkessel-Anlagen und Dampflokomotiven in sicherheits- und baupolizeilicher Beziehung (Kesselvorschriften) vom 24. 2. 1912
- y) Allgemeines Berggesetz vom 24. 6. 1865 mit den ergänzenden Bergpolizeiverordnungen über Gruben-u. Anschlußbahnen, erlassen von den einzelnen Oberbergämtern ⁶) ⁷)

²⁾ Der Verein Mitteleuropäischer Eisenbahn-Verwaltungen besteht nicht mehr. Die von ihm herausgegebenen Vereinbarungen und Übereinkommen (d, e, g und i) sind jedoch noch nicht förmlich außer Kraft gesetzt. Da sie als älteste

und ausführlichste Bestimmungssammlung die Grundlage aller anderen deutschen und zwischenstaatlichen Übereinkünfte und Anordnungen auf dem Gebiete des Eisenbahnwesens sind, werden sie zweckmäßigerweise weiterhin zur Erläuterung und Begründung der auf ihnen aufbauenden Bestimnungen verwendet werden müssen.

³⁾ Die Bestimmungen f bis k beziehen sich nicht unmittelbar auf Lokomotiven, sondern im wesentlichen auf Wagen, die im zwischenstaatlichen Verkehr die Landesgrenzen überschreiten. Sie müssen aber bei der Versendung von Lokomotiven ins Ausland auf eigenen Rädern und für den Bau von lokomotivänhnlichen Fahrzeugen (Heizkesselwagen, Kranwagen m. Dampfantrieb, Schneschleudern, Beleuchtungswagen) sowie von Dampftriebwagen beachtet werden.

Zusätzlich für alle in Deutschland gebauten Lokomotiven (soweit nicht bei Auslandslieferungen der Besteller ausdrücklich andere Bestimmungen vorschreibt)

z) Deutsche Industrienormen (DIN) einschl. Deutsche Lokomotivnormen (LON)

4) Das VAM ersetzt das bisherige Achsdruckverzeichnis des ehemaligen Vereins Deutscher (Mitteleuropäischer) Eisenbahn-Verwaltungen (VAchsV).

5) Bahnen des nicht allgemeinen öffentlichen Verkehrs sind in Deutschland die nebenbahnähnlichen Kleinbahnen, Bahnen des nicht öffentlichen Verkehrs die Privatanschlußbahnen.

6) Die Kleinbahn- und Berggesetze und -Vorschriften sind, da vom ehemaligen Königreich Preußen erlassen, nur für die Bundesländer im früheren preußi-

schen Staatsgebiet gilltig.

7) Gruben- und Grubenanschlußbahnen unterliegen nicht den allgemeinen Eisenbahn- und Kleinbahngesetzen, sondern dem Berggesetz.

Bindungen an die Fahrstrecke Die Spurweite

ist das lichte Maß zwischen den Schienenköpfen, senkrecht zur Gleisachse gemessen⁸). Nur Frankreich versteht unter Spurweite das Maß von Mitte bis Mitte Schienenkopf. Regelspur und französische Spur weichen so wenig voneinander ab, daß sie beide von den gleichen Fahrzeugen benutzt werden können.

Radsätze mit neuen Spurkränzen haben etwa 10÷12 mm Spielraum im neuen Gleis ohne Spurerweiterung. Abweichungen vom Grundmaß der Regelspur sind auf gerader Strecke nach TV § 2 (4) und BO 1928 § 9 (4) nach oben um 10 mm, nach unten um 3 mm zugelassen.

Die Grundmaße der gebräuchlichsten Spurweiten

381 mm 1'-3"

•			liche Bahnen Englands
4	157 mm	1'6"	Einige öffentliche Bahnen in England, Ausstellungs- und Vergnügungsbahnen in USA
-	00 mm	1'-711/16"	Förderbahnen für Baugerüste, Steinbrüche, Torfstiche, Ziegeleien, Bergwerke
	508 mm	1'-8"	Küstenbahn in England, Ausstellungs- und Vergnügungsbahnen
	33 mm	1'-9"	Ausstellungs- und Vergnügungsbahnen
	597 bzw. 300 mm	1'-115/8"	Kleinbahnenin Deutschland, Brasilien, Chile, Jugoslawien, Litauen, Polen; Bau-, Feld-, Industrie- u. Militärbahnen

Ausstellungs- und Vergnügungsbahnen, einige öffent-

⁸⁾ Nach TV § 2 (2) und BO § 9 (1) soll die Spurweite 14 mm unter Schienenoberkante gemessen werden.

		Australien (Tasmanien), Indien (u. a. Darjeeling — Himalayan), Südafrika, Venezuela
700 mm	2'-39/16"	Feld- und Plantagenbahnen auf Java, Cuba
750 mm	2'—51/2"	Deutschland, Ägypten, Argentinien, Estland, Indonesien, Lettland, Litauen, Norwegen, Paraguay, Peru, Polen, Rumänien, Russische Militärbahn, Spanische Kolonien, Türkei
760 bzw. 762 mm	2'—6"	Ägypten, Australien (Victoria), Bulgarien, Ceylon, Chile, Cuba, Cypern, Goldküste, Hindustan, Japan, Jugo- slawien, Korea, Nigeria, Österreich, San Domingo, Sierra Leone, Tschechoslowakei, Ungarn
785 mm	$2'-6^{7}/8''$	Oberschlesien, Werks- und Hafenbahnen in Dänemark
860 mm	2'-97/8"	Kalkwerke, Zementfabriken (vereinzelt)
891 mm	2'-111/16"	
900 mm	2'—117/16"	Deutschland (Insbesondere Grubenbahnen, behelfs- mäßige Bahnen für Bauzwecke), Portugal, Rumänien
914 mm	3'	Columbien, Cuba, Guatemala, Hawaii, Honduras, Irland, Insel Man, Mexiko, Panama, Paraguay, Peru, Philippi- nen, Portugiesisch-Ostafrika, Salvador, Schweden, Venezuela, Vera-Cruz
950 mm	$3'-1^3/8''$	ehem. Italienische Kolonien, Sizilien
1000 mm	3'-33/8"	Deutschland, Abessinien, Ägypten, Algier, Argentinien,
(Meterspur)		Australien, Belgien, Belg. Kongo, Bolivien, Brasilien, Chile, China, Columbien, Frankreich, Französisch-Westafrika, Griechenland, Hindustan, Indochina, Irak, Jugoslawien, Luxemburg, Madagaskar, Malaya, Pakistan, Polen, Portugal, Portugiesisch-Westafrika, Porto-Rico, Rußland, Schweiz, Siam, Spanien, Spanische Kolonien, Tanganjika, Togo, Tunis, Uganda, Ungarn
1050 mm	3'-53/8"	Französische Kolonien, Hedschas, Syrien, Tunis
1067 mm (Kapspur)	3'—6"	Angola, Australien, Belg. Kongo, Benguela, Chile, Costa- Rica, Ecuador, Goldkiiste, Indonesien, Japan, Mozam- bique, Neufundland, Neu-Seeland, Nicaragua, Nigeria, Norwegen, Njassaland, Philippinen, Portugiesisch-Ost- und Westafrika, Queensland, Rhodesien, Schweden, Südafrika, Sudan, Tasmanien, Venezuela
1100 mm	3'-75/16"	Straßenbahn Braunschweig, Lübeck u. a.
1435 mm (Regelspur)	4'-81/2"	Europa (außer Frankreich, Irland, Portugal, Rußland, Spanien), Ägypten, Algier, Argentinien, Australien, Chile, China, Cuba, Ecuador, Hawaii, Irak, Iran, Jamaica, Kanada, Korea, Lettland stidlich der Düna, Litauen, Mandschurei, Marokko, Mauritius, Mexiko, Nahost, Palästina, Paraguay, Peru, Trinidad, Türkei, Tunis, Uruguay, USA
1500 mm	4'-11"	Frankreich (Grundmaß Mitte bis Mitte Schienenkopf)
1524 mm	5'	Estland, Finnland, Lettland nördlich der Düna, Mandschurei, Panama, Rußland, Sibirien
1600 mm	5'-3"	Australien, (Südaustralien u. Victoria), Brasilien, Irland
1676 mm	5'—6"	Argentinien, Ceylon, Chile, Indien (Hindustan), Pakistan, Portugal, Spanien

Die Überhöhung

des äußeren Schienenstranges in Gleisbögen wirkt der Fliehkraft entgegen. Durchfährt ein Zug einen Gleisbogen vom Halbmesser R (in m) mit einer Fahrgeschwindigkeit V (in km/h), so wird die Fliehkraft aufgehoben durch eine Überhöhung

$$h = \frac{s V^2}{127 R} \quad \text{in mm}$$

wenn s = Entfernung von Mitte bis Mitte Schiene in mm.

Für Regelspur mit s = 1500 mm gilt dann $h = 11.8 \frac{V^2}{R}$ in mm.

In Rücksicht auf die Züge, die die Gleisbögen nicht mit der zugelassenen Höchstgeschwindigkeit V_{max} durchfahren, bemißt die Deutsche Bundesbahn die Überhöhungen in der Regel nach der Gleichung

$$h\,=\,8\,\,\frac{V^2{_{max}}}{R}$$

Die Oberbauvorschriften der Deutschen Bundesbahn begrenzen (in Übereinstimmung mit TV 1930 § 20, 1. Nachtrag vom 1. 10. 31) die Überhöhunga an $h_{\rm max}=150$ mm. Die Überhöhunge ain Weichen überschreiten bei der Deutschen Bundesbahn nur in seitenen Fällen h=100 mm. In neuerer Zeit sind Bestrebungen im Gange, die Größtüberhöhungen in Streckengleisen zu ermäßigen, da sie für Züge, die mit geringeren Geschwindigkeiten verkehren, besonders in Gleisbögen mit R > 1000 m in mehrfacher Hinsieht nachteilig sind.

Die Höchstgeschwindigkeiten von Reisezügen bestimmt die Deutsche Bundesbahn für $R \ge 275$ m nach der Gleichung $V_{max} \le 4.25 \sqrt[3]{R}$, diejenigen von Schneiltriebwagen für $R \ge 300$ m nach der Gleichung $V_{max} \le 4.5 \sqrt[3]{R}$.

Hieraus ergeben sich folgende

Höchstgeschwindigkeiten und Größtüberhöhungen Zahlentafel 2

V in kn	n/h	25	30	35	40	45	50	55	60	65	70	75	80	85	90
Reisezüge R (m)	100	100	125	150	150	175	200	225	250	275	350	350	400	450	
Reisezüge	h(mm)	55	70	90	90	115	120	125	130	140	145	130	145	145	145
Schnell- triebwagen	R (m)		7.00	-106	- 2	-	-						350		
	h(mm)										1	150	145	150	150

V in km/h		95	100	105	110	115	120	125	130	135	140	145	150	155	160
	R (m)	500	550	600	700	800	800	900	1000	1000	1100	1200	1300	1400	1500
	h(mm)														
Schnell- trlebwagen	R (m)	450	500	550	600	700	700	800	800	900	1000	1100	1100	1200	1300
	h(mm)	150	150	150	150	150	150	150	150	150	150	150	150	150	150

Die Spurerweiterung

soll Fahrzeugen mit 3 und mehr im Rahmen unverschieblich gelagerten Achsen das Durchfahren der Gleiskrümmungen erleichtern. Bindende Maße sind in TV und BO nicht vorgeschrieben. Es empfehlen sich die Werte der nachstehenden Zahlentafel. Die Klammermaße geben Spurerweiterungen an, die noch vielfach üblich sind.

77 1 1	1	
/ah	lentafel	- 34

Krüm-		S	purweite in	mm	
mungs- halbmesser	1435	1000	900	750	600
in m		Spur	erweiterung	in mm	
1000	0 (2)	0 (1)	0 (0)	0 (0)	0 (0)
800	0 (3)	0 (2)	0 (1)	0 (0)	0 (0)
600	0 (9)	0 (5)	0 (3)	0 (2)	0 (0)
500	0 (12)	0 (8)	0 (6)	0 (4)	0 (2)
450	0 (13)	0 (10)	0 (8)	0 (5)	0 (3)
400	0 (15)	0 (12)	0 (10)	0 (6)	0 (3)
350	0 (17)	0 (13)	0 (11)	0 (7)	0 (4)
300	0 (19)	0 (14)	0 (12)	0 (8)	0 (4)
250	5 (21)	0 (15)	0 (13)	0 (9)	0 (6)
200	5 (24)	5 (17)	5 (14)	0 (10)	0 (7)
175	10 (25)	5 (18)	5 (15)	5 (11)	0 (7)
150	10 (27)	10 (20)	10 (16)	5 (12)	5 (8)
125	15 (28)	10 (22)	10 (18)	10 (13)	5 (8)
100	20 (30)	15 (24)	10 (20)	10 (14)	5 (10)
90	20 (30)	15 (25)	15 (21)	10 (15)	10 (10)
75	20 (32)	20 (25)	15 (24)	15 (16)	10 (12)
60	20 (32)	20 (28)	15 (25)	15 (18)	10 (12)
50	20 (35)	20 (28)	15 (25)	15 (20)	10 (14)
40	20 (35)	20 (30)	15 (28)	15 (22)	10 (16)
30	20 (35)	20 (30)	15 (28)	15 (22)	10 (18)
20	-		15 (28)	15 (22)	10 (18)

Die Spurerweiterung wird zumeist durch Hinausrücken der inneren Schiene hergesteilt.

Nach BO § 9(3) sind für Gleiskrümmungen von 300 m Halbmesser an aufwärts keine Spurerweiterungen erforderlich; die Spurerweiterung darf auf Hauptbahnen 30 mm, auf regelspurigen Nebenbahnen 35 mm nicht überschreiten.

Die früheren de utschen Länderbahnen sahen Spurerweiterungen in Gleisbögen mit R ≤ 800 bis 900 m vor, und zwar bis zu 30 mm für R = 100 m. Versuche der Deutschen Reichsbahn haben jedoch erwiesen, daß durch die Spurerweiterung die Fahrwiderstände erhöht, die Abnutzung der Bogenaußenschienen und der Spurkränze erheblich vergrößert und die Sicherheitsgrade gegen Entgleisung herabgesetzt werden. Sie beseitigte deshalb durch die Oberbauvorschriften 1928 die Spurerweiterung in Streckengleisbögen bis herab zu R = 300 m und in Weichenbögen bis herab zu R = 215 m. In Gleisbögen mit R < 300 m und in Weichenbögen mit R < 215 m hingegen mußte die Spurerweiterung mit Rücksicht auf ältere, nicht genügend bogenbewegliche Lokomotiven beibehalten werden; sie wurde aber erheblich ermißligt.

Die Oberbauvorschriften 1948 der Deutschen Bundesbahn bestimmen für Gleisbögen mit R \geq 300 m eine Spurerweiterung von 0 mm ... R < 300 \div 200 m 5 ... 10 ... 10 ... R < 200 \div 150 m 10 ... 15 ... 15 ... 15 ... 20 ... 15 ... 20 ... 16 ... 17 ... 18 < 120 \div 100 m ... 18 < 120 ... 10 m ... 10 ... 20 ... 10 m ... 10 ..

Da die Abnutzung der Bogenaußenschienen und der Spurkränze seit Fortfall bzw. Ermäßigung der Spurerweiterungen erheblich zurückgegangen sind, werden Laufwerksanordnungen bei mehrachsigen Fahrzeugen angestrebt, die einen Fortfall der Spurerweiterung auch in Gleisbögen mit R < 215 m ermöglichen. Mit Abnahme des Halbmessers wachsen die Anlaufwinkel stark an, daher ist deren Vergrößerung durch die Spurerweiterung in Gleisbögen mit kleinen Halbmessern besonders nachteilig.

Zahlentafel 4

Neuere deutsche Schienenprofile

Profil	Schienen- gewicht kg/m	Schienenhöhe mm	Widerstands- moment cm ³
S 24	24,43	115	97,3
S 33	33,47	134	155
Pr 8	41,38	138	193,1
S 41	40,95	138	196
S 45	45,44	142	215
S 49	49,07	148	239

Der zulässige Achsdruck

ist von der Schienenstärke und dem Schwellenabstand abhängig.
Zahlentafel 5

Schie- nen- gewicht	Schie- nen- höhe	Wider- stands- moment W _x		bei eir	ner Schw	ellenentf Schwelle	2 Q in ternung e gemesse	
kg/m	mm	cm ³	50	60	70	80	90	100
4,50	50	7,39	1,48	1,23	1,06	0,92	0,82	0,74
6,75	65	15,2	3,04	2,54	2,18	1,90	1,69	1,52
10,0	70	24,4	2,88	4,06	3,48	3,06	2,72	2,44
12,0	80	33,9	6,78	5,66	4,84	4,24	3,76	3,39
14,0	80	36,9	7,38	6,16	5,28	4,62	4,10	3 69
15,0	93	49,3	9,86	8,22	7,04	6,16	5,48	4,93
18,3	93	58,1	11,62	9,68	8,30	7,26	6,46	5,81
20,0	100	66,8	13,36	11,14	9,54	8,36	7,42	6,68
24,43	115	97,3	19,45	16,20	13,90	12,15	10,80	9,73
33,47	134	155,0	_	_	22,15	19,40	17,20	15,50
40,95	138	196,0	_	_	-	24,50	21,80	19,60
49,07	148	239,0	_	_	_	-	26,60	23,90

Gerechnet mit 7,85 kg/dm³, zulässige Gewichtsabweich ung \pm 6%.

Den Belastungsangaben liegt die Formel $Raddruck~Q = \frac{4 \cdot \sigma_b \cdot W_X}{L~[in~cm]}~in~kg$

nach DIN 5901/02 zu Grunde, wobei $\sigma_b = 1250 \text{ kg/cm}^2$ eingesetzt ist.

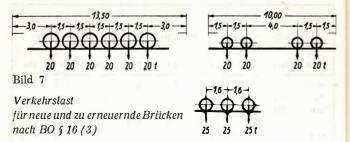
Für höhere Fahrgeschwindigkeiten (hohe dynamische Beanspruchung des

Oberbaues!) bleibt der zulässige Achsdruck unter obigen Tabellenwerten.

In USA pflegt man — mindestens 14 mittelschwere oder schwere Schwellen unter einer Schiene von 30 Fuß = 9.15 m Länge vorausgesetzt — den zulässigen

für leichte Schienen (bis zu 60 pounds per yard) . . . zu 250 lbs. für mittelschwere Schienen (60÷90 pounds per yard) zu 300 lbs.

für mittelschwere Schienen (60÷90 pounds per yard) zu 300 lbs. für schwere Schienen (über 90 pounds per yard) . . zu 350 lbs.


bezogen auf ein Schienengewicht von 1 pound per yard.

Raddruck (nicht Achsdruck) anzunehmen

Beispiel: Der Raddruck auf Schienen von 40 pounds per yard Gewicht darf betragen $40 \times 250 = 10000$ lbs.

Der Achsdruck ist vereinzelt bis auf 40 t gestiegen.

Welche Achsdrücke auf einer *Brücke* wirken dürfen, geben für Deutschland die "Verkehrslasten" nach BO § 16 (3) an, für Nordamerika ist "Cooper's standard loading" maßgebend.

Zwei Lokomotiven ohne Schlepptender mit ein- oder zweiseitig angehängten Großgüterwagen in ungünstigster Stellung mit den nachstehend angegebenen Achsbelastungen und Achsständen; oder aber drei Achsen von je 25 t, wenn durch diese Lastengruppe die Brücken oder Brückenteile stärker beansprucht werden als durch die oben angegebenen Lokomotiven.

Die vorm. De utsche Reichsbahn hat für die Einteilung der Strecken verschiedene Lastenzüge aufgestellt, deren wesentliche Merkmale aus folgender Tabelle hervorgehen:

Zahlentafel 6

Bezeichnung der Strecke	Größter zulässiger Achsdruck (Einzelachsen) t	Größtes zulässiges Metergewicht der Fahrzeuge t/m
N	25	13,67
E	25	8,89
G	20	8,18
H (= 0.9 G)	18	7,36
J (= 0.8 G)	16	6,54
K (< 0,8 G)	< 16	< 6,54

Hierbei ist unter "Metergewicht" das Gesamtgewicht des Fahrzeuges geteilt durch die Länge des Fahrzeuges $einschlie\betalich$ der Puffer zu verstehen.

Zahlentafel 7 Das schrafflerte Feld rechts in der Zeichnung stellt Cooper's standard loading'

asten- zug	Gewicht auf Lokomotiv- Laufachse A	icht omotiv- ichse	Gew auf jec 4 geku Ach	Gewicht auf jeder der 4 gekuppelten Achsen B	Gewicht auf jeder der 4 Tenderachsen C	Gewicht f jeder der enderachsen C	Gleiehförmig verteilte Last des Wagenzuges	förnig e Last enzuges
	Ibs	kg	Ibs	kg	lbs	kg	lbs per lineal foot	kg/m
E 27	13500	6 124	27 000	12247	17550	096 2	2700	4 000
E 30	15 000	6 808	30 000	13 608	19500	8845	3 000	4 470
E 35	17 500	7 938	35 000	15876	22 750	10 319	3500	5 200
E 40	20 000	9072	40 000	18144	26 000	11 794	4000	5 960
E 45	22 500	10 206	45 000	20 412	29250	13 268	4 500	6 700
E 50	25000	11340	20 000	22 680	32 500	14 742	2 000	7 450
E 55	27 500	12474	55 000	24 947	35 750	16216	5 500	8 200
E 60	30 000	13 608	00009	27 215	39 000	17 690	0000	8 940

Der feste Achsstand

muß bei *regelspurigen* Fahrzeugen, die kein Drehgestell aufweisen, nach BO § 30 mindestens 2500 mm betragen, bei Schmalspurfahrzeugen nach vBOS § 30 mindestens 2000 mm.

Drehgestelle werden von dieser Vorschrift nicht betroffen.

Bei Kleinlokomotiven darf der feste Achsstand bis auf 1500 mm verringert werden, wenn sie nur an solchen Stellen Verwendung finden, wo die Bauart der Weichen und Kreuzungen einen derart kurzen Achsstand zuläft.

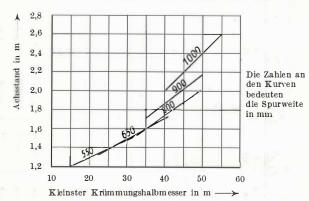


Bild 8. Achsstand und Gleiskrümmung

Für regelspurige Lokomotiven mit Drehgestellen sind feste Achsstände von 0 bis über 6000 mm ausgeführt worden. Die neuere Entwicklung geht dahin, den festen Achsstand so klein wie möglich zu halten.

Für Schmalspurlokomotiven werden als größte feste Achsstände die Werte des obenstehenden Schaubildes empfohlen.

Das Lademaß

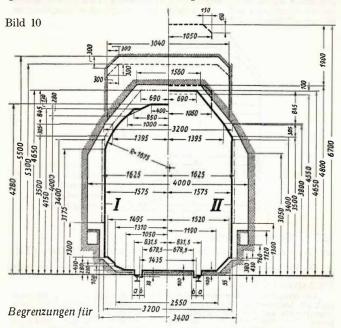
wird durch die Begrenzungslinie festgelegt, die bei Mittelstellung des Fahrzeugs im geraden Gleis von keinem Teil der Ladung überschritten werden darf.

Auf deutschen Vollspurstrecken gilt das Lademaß I (VAM, Blatt 1), das mit der Begrenzung II für Wagen (siehe Bild 12) übereinstimmt. Das Lademaß I gilt auch auf fast allen Strecken Österreichs, Ungarns, der Tschechoslowakei, Südslawiens, Polens und Rumäniens. Es gilt annähernd auch auf den meisten

Strecken Luxemburgs, Dänemarks, Bulgariens, Griechenlands und der Türkei. (Abweichungen nur im Gebiet der Räder, für Ladungsbemessungen also bedeutungslos). Die Lademaße, die für Sendungen nach anderen ausländischen Bahnen eingehalten werden müssen, sind dem VAM zu entnehmen. Eine Beschränkung auf die Begrenzungslinie für Transitvagen (VAM Blatt 2) sichert die Übergangsmöglichkeit nach beinahe allen europäischen Hauptstrecken (siehe untenstehendes Bild 9).

Bild 9. Begrenzungslinie

der Transitwagen nach der «Technischen Einheit» (TE)


Die Breitenmaße der Transitwagen sind wegen des Befahrens von Gleisbögen nach der "Technischen Einheit im Eisenbahnwesen" (TE) Art. III § 6 Abs. 2 einzuschränken.

Die obenstehende Begrenzungslinie dient bei den deutschen Eisenbahnen auch als Lademaß für Sendungen, die ohne besondere Prüfung ihrer Querschnittsmaße auf alle Auslandsstrecken mit internationalem Verkehr übergehen sollen. Die Breitenmaße der nach dieser Linie verladenen Sendungen sind wegen des Befahrens von Gleisbögen nach besonderen Vorschriften weiter einzuschränken.

Die Umgrenzungsmaße für die deutschen Bahnen.

Die Umgrenzung des lichten Raumes gibt an, wie weit benachbarte Anlagen an das Gleis heranreichen dürfen. Sie ist so bemessen, daß zwischen Fahrzeug und festen Bauten ein hinreichender Spielraum bleibt. Der Regellichtraum gilt in der Geraden und in Gleisbögen mit 250 m Halbmesser und mehr.

In Bögen mit $R < 250 \,\mathrm{m}$ müssen die Breitenmaße des Regellichtraumes entsprechend vergrößert, in Bögen mit einem Halbmesser von mehr als 500 m dürfen sie verkleinert werden. Bestimmungen hierüber werden von Fall zu Fall getroffen. Der lichte Raum muß auch bei abgenutzten Schienen vorhanden sein.

Lokomotiven, Tender und Triebwagen

im Stillstand bei Mittelstellung im geraden Gleis nach BO§§ 11 u. 28

Begrenzung I ist maßgebend, sofern nicht Begrenzung II besonders genehmigt

Begrenzung II darf an Stelle Begrenzung I nur mit Genehmigung des Verkehrsministers angewendet werden. Für Fahrzeuge mit Oberleitung und für Fahrzestelle der Kleinlokomotiven auch ohne besondere Genehmigung zugelassen.

Weitere Erläuterungen auf Seite 39.

Die Begrenzung der Fahrzeuge ist durch eine senkrecht zur Gleisachse gedachte Querschnittsfläche festgelegt, deren Umrisse von den Teilen des Fahrzeuges erreicht werden dürfen. Diese Umgrenzung muß auch bei abgenutzten Radreifen eingehalten werden.¹) Die nach außen aufschlagenden Einsteigetüren von Triebwagen und Wagen dürfen bei Mittelstellung der Fahrzeuge im geraden Gleis die Umgrenzung des Regellichtraumes seitlich um nicht mehr als 50 mm überschreiten. In Gleiskrümmungen müssen die zulässigen Breitenmaße der Fahrzeugbegrenzung so weit eingeschränkt werden, wie es für das Befahren von Gleisbögen und Weichenbögen erforderlich ist.

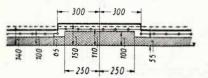


Bild 11
Untere Begrenzungslinie
für Lokomotiven, Tender
und Triebwagen, die auf **Zahnstangen**-

strecken übergehen sollen

{ Regellichtraum nach BO § 11, gültig in der Geraden und in Bögen von 250 m Halbmesser u. mehr { Obere Begrenzung des lichten Raumes auf Strecken mit Oberleitung für neue Überbauten und Tunnel nach BO § 11

Obere Begrenzung des lichten Raumes auf Strecken mit Oberleitung für vorhandene Überbauten und Tunnel nach BO § 11 Einschränkung des Regellichtraumes bei den Gleisen, die nicht als durchgehende Hauptgleise und sonstige Ein- und Ausfahrgleise von Zügen mit Beförderung von Reisenden dienen

Begrenzungen für Lokomotiven, Tender und Triebwagen

Begrenzung für Signalscheiben und Signallaternen

Begrenzung für Signalscheiben, Signallaternen und Leinenhaspel Begrenzung für Teile, aus denen Dampf ausströmt

Höchste und tiefste Arbeitsstellung des Stromabnehmers

Begrenzung für eingeschraubte oder aufgehängte Kupplungstelle

vgl. BO § 28 (8) und (11). [betr. Bremsklötze, unmittelbar auf die Schienen wirkende Bremsteile, Sandstreuer, Bahnräumer und unabgefederte Teile]

- a ≥ 150 mm für unbewegliche Gegenstände, die nicht fest \ mitd.Fahrschiene a ≥ 135 mm für unbewegliche Gegenstände, die fest \ verbunden sind
- b = 41 mm für Einrichtungen, die das Rad an der inneren Stirnfläche führen
- $b \ge 45 \,\mathrm{m\,m}$ an Wegeübergängen $b \ge 70 \,\mathrm{m\,m}$ für alle übrigen Fälle

¹⁾ Nach BO § 28 (8) u. (11) dürfen Bremsklötze, Sandstreuer, Bahnräumer und unabgefederte Teile bis auf 65 bzw. 55 mm über SO herabreichen.

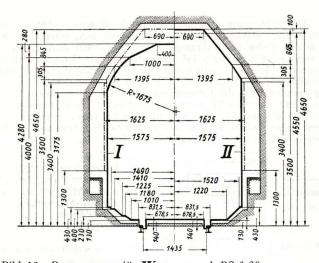


Bild 12. Begrenzungen für Wagen nach BO § 28

Begrenzung I maßgebend, sofern nicht die Anwendung der Begrenzung II

besonders genehmigt ist.

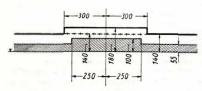


Bild 13
Untere Begrenzungslinie
für Wagen, die auf
Zahnstangenstreeken
übergehen sollen

| Regellichtraum nach BO § 11, gültig in Bögen von 250 m Halb-| messer (Abmessungen auf S. 38, Bild 10) | Begrenzungen für Wagen in geradem Gleis | --- Begrenzung für Signalscheiben und Signallaternen | Begrenzung für Signalscheiben, Signallaternen und Leinenhaspel

Begrenzung für Teile, aus denen Dampf ausströmt

- Begrenzungen für eingeschraubte oder aufgehängte Kupplungsteile

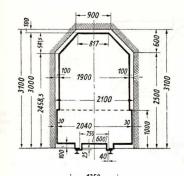
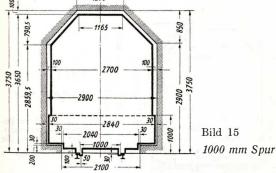
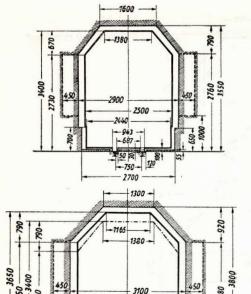



Bild 14 600 und 750 mm Spur


. I Fahrzeughegrenzung f

Umgrenzung des lichten Raumes und Fahrzeugbegrenzung für bestehende Schmalspurbahnen

nach §§ 11 und 28 der "Ausführungsbestimmungen zu den Abschnitten II, III und IV der Eisenbahn-Bau- und Betriebsordnung. — Gültig für Schmalspurbahnen" vom 4. Nov. 1904, Ausgabe 1907

bzw. §§ 7 und 16 der "Bau- und Betriebsvorschriften für nebenbahnähnliche Kleinbahnen mit Maschinenbetrieb" vom 15. Januar 1914.

Diese Umgrenzungsmaße sind in den heutigen Vorschriften nicht mehr enthalten. Für Neubauten, umfassendere Umbauten und neue Fahrzeuge von Schmalspurbahnen gelten vielmehr Bild 16 und 17 auf Seite 42.

-2700

Bild 16 750 mm Spur

Außerhalb des lichten Raumes sind noch seitliche, durch schmalere Schraffur gekennzeichnete Räume von je 450 mm Breite freizuhalten

Bild 17 1000 mm Spur

— — Obere Begrenzung meterspuriger Fahrzeuge, die auf vollspurige Wagen verladbar sind

Umgrenzung des lichten Raumes im geraden Gleis für

2540

Neubauten und umfassendere Umbauten von Schnidspurbahnen und Begrenzungslinie für neue Fahrzeuge bei Mittelstellung im geraden Gleis

nach §§ 11 und 28 der v
BOS vom 25. Juni 1943. Für Gleiskrümmungen enthalten die angeführten §§ besondere Anweisungen.

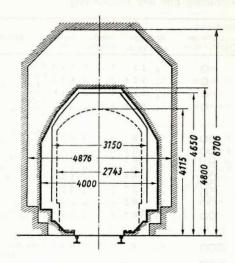


Bild 18. Größenvergleich von Umgrenzungsmaßen für Regelspur

Umgrenzung des lichten Raumes in USA

Umgrenzung des lichten Raumes nach BO § 11

Fahrzeugbegrenzung II nach BO § 28

Fahrzeugbegrenzung für englische Bahnen

Der Regellichtraum der russischen Eisenbahnen (1524 mm Spurweite) zeigt eine größte Breite von 3600 mm und eine größte Höhe von 5250 mm.

Kennzeichnung der Lokomotiven und Triebwagen

Die Achsanordnung und ihre Bezeichnung

	Achsanordnung		Bez	eichnung		
	< vorn O Laufachse O getr. A chse	deu alt	tsche neu¹)	engl amerik.	franz.	Kennwort
	< °O < °O < °O <	1/ ₂ 1/ ₃ 1/ ₃ 1/ ₄	1 A 1 A 1 2 A 2 A 1	2—2—0 2—2—2 4—2—0 4—2—2	1 1 0 1 1 1 2 1 0 2 1 1	Planet { Jenny Lind, Buddicom Crampton { Single Driver, Bicycle
Lokomotiven	< 00 < 00° < 00° < 00° < 00° < 00° < 00° < 00° < 00° < 00°	2/2 2/3 2/4 2/3 2/4 2/5 2/4 2/5 2/6	B B 1 B 2 1 B 1 1 B 1 1 B 2 2 B 2 B 1 2 B 2	0-4-0 0-4-2 0-4-4 2-4-0 2-4-2 2-4-4 4-4-0 4-4-2 4-4-4	0 2 0 0 2 1 0 2 2 1 2 0 1 2 1 1 2 2 2 2 0 2 2 1 2 2 2	{ 4-wheel switcher, 4 wheeler Forney 4-Coupled Four wheeler Columbia American Atlantic Reading Double Ender
Beispiele von einfachen Lokomotiven	< 000 < 000	3/3 3/4 3/5 3/4 3/5 3/6 3/5 3/6 3/7	C 1 C 2 1 C 1 C 1 C 1 C 2 C 2 C 1 C 2 C 1 2 C 2 C	0-6-0 0-6-2 0-6-4 2-6-0 2-6-2 2-6-4 4-6-0 4-6-2 4-6-4	0 3 0 0 3 1 0 3 2 1 3 0 1 3 1 1 3 2 2 3 0 2 3 1 2 3 2	6-wheel switcher, Bourbonnais, Sixcoupler Forney 6-Coupled Mogul Prairie Adriatic Ten wheeler Pacific Baltic, Hudson
	< 0000 < 0000 < 0000 < 0000 < 0000 < 0000 < 0000 < 0000 < 0000	4/4 4/5 4/6 4/5 4/6 4/7 4/6 4/7 4/8	D D D D D D D D D D D D D D D D D D D	0—8—0 0—8—2 0—8—4 2—8—0 2—8—2 2—8—2 4—8—0 4—8—2 4—8—4	0 4 0 0 4 1 0 4 2 1 4 0 1 4 1 1 4 2 2 4 0 2 4 1 2 4 2	{ 8-wheel switcher, 8-Coupler Consolidation Mikado Berkshire Twelve wheeler Mountain, Mohawk Pocono, Confederation Niagara, Northern

	Achsanordnung		Bez	eichnung		
•	<pre>< vorn O Laufachse</pre>		tsche neu ¹)	engl amerik.	franz.	Kennwort
Lokomotiven	< 00000 < 00000 < 00000 < 00000 < 00000 < 00000 < 00000	5/5 5/6 5/8 5/7 5/8 6/7 5/8	E E1 1 E 1 1 E 2 2 E	0—10—0 0—10—2 2—10—0 2—10—2 2—10—4 4—10—0 4—10—2	1 5 0 1 5 1 1 5 2 2 5 0	10-wheel switcher, 10-Coupler Union Decapod Santa Fé, Lorraine Texas, Selkirk Mastodon Overland, Sierra, Southern Pacific Super Mountain
	< 000000 < 000000 < 000000 < 000000 < 000000 < 000000	6/6 6/7 6/8 6/9 6/8 6/9 6/10	F 1 F 1 1 F 2 2 F 2 F 1 2 F 2	$\begin{array}{c} 0 - 12 - 0 \\ 2 - 12 - 0 \\ 2 - 12 - 2 \\ 2 - 12 - 4 \\ 4 - 12 - 0 \\ 4 - 12 - 2 \\ 4 - 12 - 4 \end{array}$		Centipede Javanic Union Pacific

Durch Zusatzbezeichnungen zur Darstellung der Achsfolge lassen sich die kennzeichnenden Eigenarten der Lokomotive in knappester Form festlegen. LON 52 (2. Ausgabe vom Mai 1937) führt an:

- 1. die Dampfart (h = Heißdampf, n = Naßdampf)
- 2. die Anzahl der Dampfzylinder (in Form einer arabischen Ziffer)
- die Art der Dampfdehnung (v = Verbundwirkung; einfache Dampfdehnung wird nicht besonders gekennzeichnet).
- 4. eine besondere Kennzeichnung für vom Hauptrahmen unabhängige Achsen (mit einem über der Zeile stehenden Beistrich bzw. durch Klammern). Wir haben von dieser Kennzeichnung im allgemeinen abgesehen.

Zweckmäßigerweise fügt man noch hinzu:

- 5. den Verwendungszweck (G= Güterzuglokomotive, P= Personenzuglokomotive, S = Schnellzuglokomotive)
- 6. die Art des Unterbringens der Vorräte (t = Tenderlokomotive; Schlepptenderlokomotiven werden nicht besonders gekennzeichnet).
- 7. bei Gelenklokomotiven die Bauart (Mallet, Garratt usw.), ebenso bei Sonderbauarten (Franco-Crosti u. a.).

Beispiele:

- 2C1 h4v S-Lok. = dreifach gekuppelte Heißdampf-Vierzylinder-Verbund-Schnellzuglokomotive mit vorderem Drehgestell und hinterer Laufachse sowie besonderem Tender.
- 1 E1 h 2 Gt-Lok. = fünffach gekuppelte Heißdampf-Zwilling-Güterzug-Tenderlokomotive mit vorderer und hinterer Laufachse.
- Die deutsche Kennzeichnung der Tender berücksichtigt die Anzahl und Anordnung der Achsen und den Wasservorrat, z. B.:
- 3T12 = dreiachsiger 12 m³-Tender
- 4T31,5 = vierachsiger 31,5 m³-Tender (alle Achsen im Hauptrahmen)
- 2'2 T 31,5 = vierachsiger 31,5 m³-Tender mit einem zweiachsigen Drehgestell und zwei im Hauptrahmen gelagerten Achsen.

Achsanordnung			Bezeichnung		Kennwort
O Laufachse O Getr. Achse	alte	neue deutsche ¹)	englisch- amerikanische	französische²)	(nur für Bau- art Mallet)
00 + 00>	2/2+2/2	BB	0-4-0+0-4-0	020 + 020	
00 + 000>	2/3+2/2	1B B	2-4-0+0-4-0		
°00 + 00	2/2+2/3	BBI	0-4-0+0-4-2		
°00°+	2/4+2/4	181 181	2-4-2+2-4-2	121 + 121	
00000+	2/5+2/5	2B I IB2	4-4-2+2-4-4	_	
000 + 000 >	3/3+3/3	CC	0-9-0+0-9-0	030 + 030	
°000 + 000 ×	3/3+3/4	C C 1	0-9-0+0-9-0	030 + 031	
000 + 0000 >	3/4+3/3	2 21	2-6-0+0-6-0	130 + 030	
°000 + 000° >	3/4+3/4	10 01	2-9-0+0-9-5	130 + 031	
° + ° 000° + °	3/5+3/5	101 101	2 - 6 - 2 + 2 - 6 - 2	131 + 131	
00	3/4+3/6	1 C C3	2-6-0+0-6-6	130 + 033	Alleghany
- 000 + 000	2/5+2/5	2C C2	4-9-0+0-9-4	0	Union Pacific, Challenger
00000+0000000	3/6+3/6	_	4-6-2+2-6-4	231 + 132	,
0000 + 0000 >	4/4+4/4	0 0	0-8-0+0-8-0	040 + 040	
0000 + 0000°>	4/5+4/4	10 D	2-8-0+0-8-0	140 + 040	
0000 + 0000	4/5+4/5	10 01	2-8-0+0-8-2	140 + 041	
00000 + 00000 ×	4/5+4/6	1 D D 2	2-8-0+0-8-4	140 + 042	Yellowstone
°0000°+°0000°>	4/6+4/6	_	2-8-2+2-8-2	141 + 141	
00000 + 00000000	_	2D D2	4-8-0+0-8-4	240 + 042	
000000+00000000	4/2+4/2	2D1 1D2	4-8-2+2-8-4	241 + 142	
00000 + 00000 >	-	2	0-10-0+0-10-0	050 + 050	
· 00000 + 00000 · >	9/9+9/9	1881	2-10-0+0-10-2	150 + 051	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4/5+4/4	IQ Q(QI)	2-8-0+0-8-0	140+040+041	3)

Die Ermittlung der Hauptabmessungen

von Triebfahrzeugen setzt die Kenntnis der gewünschten bzw. technisch voraussichtlich möglichen Leistungs- und Zugkraftkurve voraus.

Die Abhängigkeit zwischen Leistung, Zugkraft und Fahrgeschwindigkeit ist gegeben durch den Ausdruck

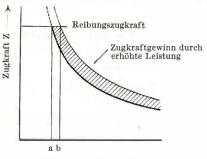
$$N = \frac{ZV}{270}$$
 in PS

Hierin ist N = Leistung in PS, Z = Zugkraft in kg,

V = Fahrgeschwindigkeit in km/h.

Wird das Kilowatt (kW) als Leistungseinheit gewählt, so gilt entsprechend

$$N = \frac{ZV}{367} \text{ in } kW$$


denn 1 PS = 736 Watt 1 kW = 1,36 PS

Begriffsbestimmungen:

Man unterscheidet

- 1. hinsichtlich der Leistung
 - a) Kesselleistung bzw. Motorleistung
 - b) Leistung im Zylinder bzw. an der Motorwelle: Indizierte Leistung Ni
 - c) Leistung am (Treib-)Radumfang Nr
 - d) Leistung am Zughaken bzw. Tenderzughaken: Effektive Leistung Ne
- 2. hinsichtlich der Zugkraft
 - a) Zugkraft aus der Kesselleistung bzw. der Motorleistung
 - b) Indizierte Zugkraft Zi
 - c) Zugkraft am (Treib-)Radumfang Zr
 - d) Zugkraft am Zughaken bzw. Tenderzughaken: Effektive Zugkraft Ze

Die Zugkraft muß den Widerstand überwinden, den der Eisenbahnzug der Fortbewegung entgegensetzt (Zugwiderstand). Bezeichnet $W_{\mathbf{Z}}$ den Zugwiderstand, so muß eine Zugkraft $\mathbf{Z} \geqq W_{\mathbf{Z}}$ erzeugt werden.

Fahrgeschwindigkeit V —→

Bild 19. Begrenzung der Zugkraft durch die Haftreibung Zugkraftgewinn durch erhöhte Leistung

a und b: Reibungsgeschwindigkeit für geringere bzw. höhere Leistung

Die erzielbare Zugkraft wird im Bereich geringer Fahrgeschwindigkeiten durch die Haftreibung zwischen Treibrad und Schiene begrenzt. Diese "Zugkraft an der Reibungsgrenze" oder "Reibungszugkraft" bleibt bestimmend bis zur "Reibungsgeschwindigkeit", oberhalb welcher allein die Leistung den Verlauf der Zugkraftlinie festlegt.

Eine Erhöhung der Leistung schiebt die Reibungsgeschwindigkeit weiter hinauf und ermöglicht bei den jeweiligen Fahrgeschwindigkeiten erhöhte Zugkräfte (Bild 19).

Aus der Zugkraftkurve ergeben sich mit Hilfe des Zugwiderstandes das Schlepplasten-Diagramm und das s-V-Diagramm, die beide als Grundlagen für die Dienstfahrpläne dienen (siehe S. 66).

Der Zugwiderstand

setzt sich zusammen aus dem Lokomotivwiderstand und dem Wagenwiderstand. Er wird hervorgerufen durch

die rollende Reibung zwischen Rad und Schiene sowie die Lagerreibung

die Maschinenreibung = Reibung in den Lokomotiv-Triebwerk- und Steuerungsteilen

die durch das Federspiel bedingte Federreibung

den Widerstand der Luft

den Einfluß der störenden Bewegungen die Steigung der Bahnstrecke.

die Krümmung der Bahnstrecke (Spurkranzreibung und Richtungsänderung)

den Trägheitswiderstand der zu beschleunigenden Massen (nur bei Geschwindigkeitsänderungen) Laufwiderstand oder Rollwiderstand

(= Widerstand auf ebener, gerader Strecke im Beharrungszustand des Zuges)

Steigungswiderstand Kriimmungs-

widerstand

Beschleunigungswiderstand

Es ist also

Laufwiderstand von Lokomotive und Tender

Mit W_b = 0 ist der Zug im Beharrungszustand (gleichförmige Geschwindkeit) > 0 wird der Zug beschleunigt (Erhöhung der Fahrgeschwindigkeit) < 0 wird der Zug verzögert (Verringerung der Fahrgeschwindigkeit)

Der Laufwiderstand

 Laufwiderstand der üblichen Kolben-Dampf-Lokomotive nach Strahl für den Beharrungszustand auf ebener, gerader Strecke

$$W_{L+T} = 2.5 G_0 + c_1 G_r + c_2 F \frac{(V+\Delta V)^2}{100} + 0.04 Z_i$$
 in kg

mit G_0 = Dienstgewicht in t von Lokomotive und Tender, soweit es von den nicht gekuppelten Achsen auf die Schienen übertragen wird. G_0 ist

zunächst zu schätzen, wobei der Tender mit halben Vorräten angenommen werden kann. Werden für die Laufachsen und die Tenderachsen Wälzlager verwendet, so sinkt der Beiwert auf etwa 1,8-2,0.

G, = Reibungsgewicht der Lokomotive in t

F = Querschnittsfläche der Lokomotive in m², die den Luftwiderstand hervorr uft (F = 10-:-12 m² bei Vollbahnlokomotiven, bei kleineren Lokomotiven entsprechend geringer)

Beiwert, abhängig von der Anzahl der gekuppelten Achsen und der Dam pfzylinder:

= 5,8 für 2 gekuppelte Achsen bei 2 Dampfzylindern

								Dampizymuu
-	5,9		2		997		3	Dam proj ma
-	6,0		2			**		**
-	7,3		3	**	**	**	4	**
-5		**		**	2.5	0.00	2	
==	7,4		3				3	
=	7,5		3	200			4	**
100	8,4	- 68	4	200	**	**		**
_	8,5	••		**	**	**	2	**
		**	4	44	**		3	
100	8,6	**	4		**		4	
800	9,3	.,	5	1.00			2	1976
==	9,4		5	373	7.7	**		**
-	9,5	**		**	**	**	3	20
		**	5	**	**	**	4	
ter	10,0	**	6	**			2	253
=	10.15		6		- 50	022	3	**
-	10.3		C		**	**	U	**

c2 = 0,6 für die übliche Lokomotive

0,33 für die Lokomotive mit teilweiser "Stromlinien"-Verkleidung

0.25 ÷ 0.3 für die Lokomotive mit vollständiger "Stromlinien"-Verkleidung

V = Fahrgeschwindigkeit in km/h

1 V = Zuschlag zur Fahrgeschwindigkeit in km/h, der die Erhöhung des Luftwiderstandes durch Wind berücksichtigt:

= 0 bei Windstille (kommt selten in Betracht)

= 12 bei mittelstarkem Seitenwind (üblicher Zuschlag) = 20 bei starkem Seitenwind

= 30 bei besonders heftigen und andauernden Stürmen, z. B. Mistral.

2. Laufwiderstand der elektrischen Lokomotive für den Beharrungszustand auf ebener, gerader Strecke (in Anlehnung an die Formel von Strahl auf S. 49)

$$W_{\rm L} = 2.5 G_{\rm O} + c_1 \cdot G_{\rm F} + c_2 F \frac{(V + \Delta V)^2}{100}$$
 in kg

mit Go = Gewicht auf den Laufachsen in t

c₁ = 5.0 für Einzelachsantrieb mit Hohlwellen

4,5 für Tatzenlagermotoren und für Buchli-Antrieb

5,4-:-9,0 für Stangenantrieb je nach Zahl der Kuppelachsen

c₂ = 0.25-:-0.3 für Lokomotiven mit runder Kopfform (F = 11.4 m²) 0,4 -:-0,45 für Lokomotiven mit eckiger Kopfform (F = 10,5 m²) 3. Laufwiderstand von Lokomotiven und Triebwagen mit Verbrennungsmotoren für den Beharrungszustand auf ebener, gerader Strecke (Näherungsformel)

$$\mathbf{W_L}$$
 bzw. $\mathbf{W_T} = \mathbf{c_1} \cdot \mathbf{c_2} \cdot \mathbf{G} + \mathbf{c_3} \ \mathbf{F} \ \frac{(\mathbf{V} + \Delta \ \mathbf{V})^2}{100}$ in kg

mit V = Fahrgeschwindigkeit in km/h

Δ V = Zuschlag für Seitenwind in km/h

G = Lokomotiv- bzw. Triebwagengewicht in t

F = Querschnittsfläche des Fahrzeuges einschl. Dachaufbauten (in der Regel etwa 10 m²)

Beiwerte (Mittelwerte für übliche Betriebsverhältnisse):

für gut unterhaltenen Oberbau

c₂ = 2.5-;-3.5 .. Motorlokomotiven

.. ältere Triebwagen (mit Gleitlagern) .. neuere (mit Wälzlagern)

., mehrteilige Schnelltriebwagen = 1.6

= 0.225.. zweiachsige Triebwagen mit runder Konfform

= 0.25.. vierachsige .. zweiachsige = 0.375

= 0.425.. vierachsige = 0.225.. zweiteilige Schnelltriebwagen

= 0.30.. dreiteilige = 0.36.. vierteilige

= 0.50-:-0.70 für Motorlokomotiven

Triebwagen-Anhänger können berücksichtigt werden durch die Formel

$$\mathbf{W}_{\mathrm{A}} = \mathbf{n} \left[\mathbf{1.5} \ \mathbf{e}_{1} \cdot \mathbf{G}_{\mathrm{A}} + \mathbf{e}_{3} \cdot \mathbf{F}_{\mathrm{A}} \ \frac{(\mathbf{V} + \Delta \mathbf{V})^{2}}{10} \right] \quad \text{in kg}$$

mit n = Anzahl der Anhänge-Wagen

c₃ = 0.13 für Anhänger mit runder Kopfform

= 0,15 ...

Die Laufwiderstände von Motorlokomotiven für Industrieund Grubenbahnen können nach folgender Aufstellung angenommen werden: Zahlentafel 8

	Laufwiderstand in kg/t				
Spurweite in mm	Grubenbahnen	Förderbahnen über Tage			
500	12-:-15	12 : 13			
600	1113	10-:-12			
750	8-;-10	8			
1000	_	6			

- Laufwiderstand des Wagenzuges für den Beharrungszustand auf ebener, gerader Strecke
- a) Allgemein nach Strahl

$$\mathbf{w}_{\mathrm{W}} = 2.5 + \frac{(\mathbf{V} + \Delta \mathbf{V})^2}{\mathbf{k}}$$

in kg/t Schlepplast

- mit k = 4000 für D-Züge, Eilzüge. Schnellzüge und schwere Güterzüge von gleichförniger Zusammensetzung (Kohlen-, Erz-, Großgüterwagenzüge)
 - 3000 für gewöhnliche Personenzüge (verschiedene Wagentypen in einem Zuge!)
 - 2500 für Eilgüterzüge (zumeist kurze Wagen, verhältnismäßig viele Zwischenräume)
 - 2000 für Güterzüge gemischter Zusammensetzung (beladene und unbeladene, offene und verdeckte Wagen in beliebiger Folge)
 - = 1000 für Leerwagenzüge aus zweiachsigen Güterwagen
 - $\Delta V = \text{Zuschlag für Seitenwind in km/h (wie in der Formel für den Lokomotivwiderstand)}$
- b) Genauere Werte für langsam fahrende Züge (etwa V \leq 40 km/h) nach der nachgelassenen Formel von Strahl

$$w_{W} = 2 + (0,007 + m) \frac{V^{2}}{100}$$

in kg/t Schlepplast

- mit m = 0,025 für Züge gleichförmiger Zusammensetzung (D-Züge, Eilzüge, Kohlen-, Erz-, Großgüterwagenzüge)
 - = 0,033 für gewöhnliche Personenzüge
 - = 0,040 für Eilgüterzüge
 - = 0,050 für gewöhnliche Güterzüge gemischter Zusammensetzung
 - 0,100 für Leerwagenzüge
- c) Genauere Werte für schnell fahrende Züge (mit Gleitlagern!) nach Sauthoff

$$w_{W} = 1.9 + b \cdot V + 0.0048 \frac{1}{G_{W}} (n + 2.7) \cdot (V + 12)^{2}$$
 in kg/t

mit G_w = Gewicht des Wagenzuges in t dienstfähig

- n = Anzahl der Wagen (Zuschlag 2,7 berücksichtigt Sog des letzten Wagens)
- f = 1.55 m² = Äquivalentfläche eines älteren D-Zugwagens
 - = 1,45 m² = ... neueren ... neueren ... von 2- u. 3-achsigen Personenzug wagen
- b = 0,0025 für vierachsige Drehgestell-Wagen
- b = 0,0025 für vierachsige Drehgestell-Wagen
 - = 0,0040 .. dreiachsige Wagen
 - = 0,0070 ,, zweiachsige Wagen

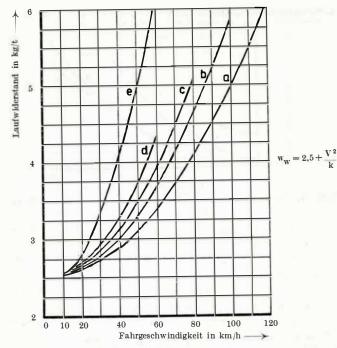


Bild 20. Laufwiderstand der Schlepplast nach Formel 4a für Δ V = 0

k = 4000 für Kurve a = 3000 für Kurve b = 2500 für Kurve c = 2000 für Kurve d = 1000 für Kurve e

- d) Laufwiderstaud von Rollböcken 12-14 kg/t.
- e) Bei **Bahnen mit rauhem Betrieb** (Bau-, Feld-, Wald-, Werk- und Industriebahnen) vernachlässigt man zweckmäßigerweise den Einfluß der Fahrgeschwindigkeit und rechnet durchweg mit einem Laufwiderstand von
 - $8\div12~\mathrm{kg/t}$ für die Lokomotive und $4\div8~\mathrm{kg/t}$ für die Schlepplast.
- Im Tagebau (nach "Braunkohle" 1950, S. 145)
 - $w_L = 10 \div 12 \text{ kg/t für Regelspur, } 15 \div 25 \text{ kg/t für 900 Spur}$ $w_W = 5 \div 7 \text{ kg/t für Regelspur, } 7 \div 10 \text{ kg/t für 900 Spur}$

5. Für Überschlagsrechnungen empfehlen sich Formeln, die den gesamten Laufwiderstand des Zuges (Lokomotive + Schlepplast) erfassen:

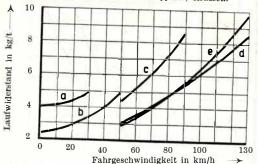


Bild 21. Laufwiderstände von Zügen (Lokomotive + Schlepplast) von Bau-, Feld- und Waldbahnen:

$$w = 4 + \frac{v^2}{1000} \text{ in kg/t} \dots Kurve a$$

von Vollbahnen für geringe Fahrgeschwindigkeiten (Clark):

$$w = 2.4 + \frac{\ddot{V}^2}{1000}$$
 in kg/t Kurve b

von Vollbahnen für mittlere Fahrgeschwindigkeiten (Erfurt):
$$w = 2.4 + \frac{V^2}{1300} \quad \text{in kg/t} \quad \dots \quad \dots \quad \text{. Kurve c}$$

von Vollbahnen für große Fahrgeschwindigkeiten (Barbier):

$$w = 1.6 + 0.456 \text{ V} \frac{V + 10}{1000} \text{ in kg/t} Kurve e}$$

6. Die in USA gebräuchlichen Widerstandsformein geben gegenüber den deutschen etwas höhere Werte an. Es ist mit 1 ton= 2000 lbs. und w = Widerstand in pounds per ton, Q = Gewicht der Schlepplast in tons, V = Geschwindigkeit in miles per hour

der Laufwiderstand

a) von Schmalspur- und — nach amerikanischen Begriffen — "leichten" Regelspurlokomotiven + Tendern

$$W_{L+T} = 5 + 0.004 V^2$$
 in pounds per ton

b) von schweren Regelspurlokomotiven + Tendern

$$W_{L+T} = 4.3 + 0.003 V^2$$
 in pounds per ton

c) von Personenwagen bis zu 45 tons und Güterwagen beliebigen Gewichts

$$W_W = 1.5 + \frac{106 + 2 \text{ V}}{G + 1} + 0.001 \text{ V}^2$$
 in pounds per ton,

wobei G das Gewicht eines Wagens in tons bedeutet

d) von Personenwagen über 45 tons

$$W_W = 4.3 + 0.0017 V^2$$
 in pounds per ton.

7) Widerstandswerte für Wagen mit Luftreifen

Man kann einen Laufwiderstand von 11÷15 kg/t annehmen. Der Widerstand steigt mit der Fahrgeschwindigkeit und wird andererseits um so geringer. je höher der Luftdruck im Reifen (Reifeninnendruck) ist.

Nach Revue Générale des Chemins de Fer, 1949, S.19, bzw. Glasers Annalen, 1951, S. 251, wurden an leeren französischen Micheline-Wagen von 14 t Gewicht bei 100 km/h Fahrgeschwindigkeit und einem Reifeninnendruck von 9 atti der reine Rollwiderstand zu 6.7 kg/t. der Luftwiderstand zu 8.0 kg/t. der Gesamtwiderstand (Laufwiderstand) mithin zu 14.7 kg/t ermittelt. Bei Versuchen mit voll ausgelasteten Wagen zu 21 t Dienstgewicht ergab sich ein geringerer Rollwiderst and von nur 5,47 kg/t.

8. Verschiedenes

Bei Gleitlagern mit Umlaufschmierung (Isothermos, Peyinghaus u. a.) beträgt die Reibungszahl im Mittel 0.002 (Lagerreibung etwa zwei- bis viermal geringer als bei Polsterlagern).

Bei Anwendung von Wälzlagern ist der durch die Achslagerreibung hervorgerufene Anteil des Laufwiderstandes um etwa 30%, der Laufwiderstand selbst damit um 10-15% geringer.

Bel hohen Geschwindigkeiten (etwa über 130 km/h) lohnt sich die Anwendung der "Stromlinien"form. Die hierdurch bedingte Verringerung des Luftwiderstandes bringt bel einer Dampf-Lokomotive — je nach Lokomotivgröße und Fahrgeschwindigkeit - etwa 10-20% Leistungsersparnis.

Für Zahnrad-Lekomotiven und -Triebwagen kann der Laufwiderstand zu 16 -- 32 kg/t angenommen werden.

Der Steigungswiderstand

beträgt w_e = s kg/t Zuggewicht, wenn die Strecke sich über einer waagerechten Grundlinie von 1000 m Länge um s Meter erhebt.

Zahlentafel 9

Steigung	ws in kg/t	Steigung	w _s in kg/t
1: O bzw. 0	0 1 2 2,5 3 4 5 6	1:100 bzw. 10	10 12,5 16,6 20 25 40 50 58,8 100

Der Kriimmungswiderstand kann angenommen werden

1. nach untenstehendem Bild 22

2. nach den vom Achsstand abhängigen Formeln

A = Achsstand in m s = Spurweite in m

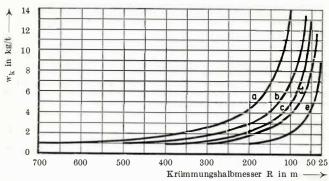


Bild 22. Krümmungswiderstand

für 1435 mm Spurweite und darüber (Formeln von Rockl)

$$w_k = \frac{650}{R-55} \\ w_k = \frac{500}{R-30} \\ kg/t \text{ wenn R} > 300 \text{ m} . \text{ Kurve a} \\ kg/t \text{ wenn R} < 300 \text{ m} . \text{ Kurve b} \\ kg/t \text{ wenn R} < 300 \text{ m} . \text{ Kurve b} \\ kg/t \text{ wenn R} < 300 \text{ m} . \text{ Kurve b} \\ kg/t \text{ wenn R} < 300 \text{ m} . \text{ Kurve b} \\ kg/t \text{ wenn R} < 300 \text{ m} . \text{ Kurve b} \\ kg/t \text{ wenn R} < 300 \text{ m} . \text{ Kurve b} \\ kg/t \text{ wenn R} = \frac{300}{R-5} \\ kg/t \text{ wenn R} = \frac{300}{R-5} \\ kg/t \text{ wenn R} = \frac{200}{R-5} \\ kg/t \text{ wenn R} = \frac{200}{R-5}$$

3. für Regelspur nach den Frankschen Formeln

$$\begin{array}{lll} w_{\mathbf{k}} &=& \frac{\mathbf{A}}{\mathbf{R}} \left(180 - 1000 \, \frac{\mathbf{A}}{\mathbf{R}}\right) & \text{in kg/t für Personenzüge} \\ w_{\mathbf{k}} &=& \frac{\mathbf{A}}{\mathbf{R}} \left(180 - 2000 \, \frac{\mathbf{A}}{\mathbf{R}}\right) & \text{in kg/t für Güterzüge} \end{array}$$

Hierbei ist A = fester Achsstand der Fahrzeuge in m

 nach Protopapadakis (sofern auf besonders genaue Angaben Wert gelegt wird)

zu w
$$_{\mathbf{k}}=(158.4~\mathrm{s}+103.4~\mathrm{A})$$
: R in kg/t für Sommerbetrieb = $(118.8~\mathrm{s}+77.5~\mathrm{A})$: R in kg/t für Winterbetrieb

Die $\mathbf{w_k}$ -Werte beziehen sich auf den ganzen Zug (Lokomotive, Tender und Schlepplast). Man setze Durchschnittswerte von A ein.

Der Krümmungswiderstand wird nur für den Teil des Zuges berücksichtigt, der sich tatsächlich im Gleisbogen befindet.

Grade und Halbmesser von Gleisbögen

Zahlentafel 10

Grad	Halbmesser in m	Grad	Halbmesser in m
1	1746	16	109,1
2	873	18	97
3	582	20	87.3
	436.5	22	79.4
5	349.2	24	72,75
6	291	26	67,2
7	249.4	28	62,4
8	218.3	30	58,2
9	196.2	35	49,9
10	174,6	40	43,65
11	160.5	45	38,8
12	145,5	50	34,9
13	134,3	60	29,1
14	124,7	70	24,9
15	116,4	80	21,8

In England und Amerika werden die Gleisbögen vielfach nach *Groat* angegeben. Bedeutet D die Bezeichnung der Kurve in Grad und r den Halbmesser in englischen Fuß, so ist D = $\frac{5730}{r}$. Soll eine nach Grad angegebene Krümmung in deutscher Bezeichnungsweise ausgedrückt werden, so ist zu setzen R = $\frac{1746}{D}$, wobei R den Halbmesser in Metern bedeutet.

D ist die Winkelabweichung der Gleisrichtung auf 100 ft Länge des Gleis-"bogens bei 360° Winkelteilung, mit genügender Genauigkeit auch der Zentri-"winkel auf 100 ft Sehnenlänge.

Der Beschleunigungswiderstand

ist gegeben durch

$$w_b = \frac{1000}{9,81}$$
 . b (1 + e)

in kg/t Zuggewicht

mit b = Beschleunigung in m/sec²

c = Zuschlag für umlaufende Massen

 $= 0.03 \div 0.1$ für Wagen

= 0,08 ÷ 0,1 für übliche Dampflokomotiven

 $= 0.15 \div 0.3$ für elektrische Lokomotiven

Im Beharrungszustand (bei gleichmäßiger Fahrt) ist $w_b = 0$.

Die "mittlere" Beschleunigung errechnet sich aus

$$b_{\rm m} = \frac{v_2 - v_1}{t} = \frac{V_2 - V_1}{3.6 \text{ t}} \text{ in m/sec}^2$$

wenn v

Fahrgeschwindigkeit in m/sec

V = 3.6 V = Fahrgeschwindigkeit in km/h

 v_1 bzw. V_1 = Fahrgeschwindigkeit bei Beginn der Beschleunigungsperiode

V₂ bzw. V₂ = Fahrgeschwindigkeit am Ende der Beschleunigungsperiode

Beschleunigungszeit t =
$$\frac{v_2-v_1}{b_m}$$
 = $\frac{V_2-V_1}{3,6\ b_m}$ in sec

Beschleunigungsweg l =
$$(v_2-v_1) t = \frac{V_2-V_1}{3.6} \cdot t$$
 in m

Genaue Werte ergeben sich mit

$$b \; = \; \frac{\text{d} V}{\text{d} t} \; \dots \qquad t \; = \; \int \; \frac{1}{b} \; \, \text{d} V \; \dots \qquad 1 \; = \; \int \; \frac{V}{b} \; \, \text{d} V \;$$

Das Anfahren ist ein ungleichförmiger Beschleunigungsvorgang

mit
$$v_1$$
 bzw. $V_1 = 0$ und $W_b \sim \frac{4 V_2^2}{1}$

Der reib ungsbedingte zusätzliche Anfahrwiderstand kann angenommen werden¹)

etwa 2 kg/t bei Verwendung von Wälzlagern

Die übliche Anfahrbeschleunigung beträgt

für	Dampfloko	motiven		Streckendienst Verschiebedienst Stadtbahnbetrieb	$0.04 \div 0.07$ $0.10 \div 0.20$ $0.15 \div 0.30$	m/sec
für	elektrische	Lokomotiven	٠	Güterzugdienst Schnellzugdienst Personenzugdienst	0,3	m/sec m/sec m/sec
für	elektrische	Triebwagen .	¥	 Fernverkehr Vorortverkehr Stadtschnellbahner	$0.4 \div 0.6$ $0.6 \div 0.8$ $0.8 \div 1.0$	m/sec

Von 1,2 m/sec² Beschleunigung an muß man mit körperlichem Unbehagen rechnen.

für den amerikanischen P.C.C.-Straßenbahnwagen bis zu

Größtmögliche Beschleunigung für Stahlreifen auf Schienen etwa 2 m/sec², für Gummireifen auf Schienen etwa 3m/sec².

Hohe Beschleunigungen werden vom Schnellverkehr auf Kurzstrecken (Stadtbahnen, Vorortbahnen) gefordert. Im Fernverkehr sind sie von geringerer Bedeutung, der durch sie erzielbare Zeitgewinn läßt sich hier auch durch geringfügige Erhöhung der Dauer-Fahrgeschwindigkeit erreichen. Hohe Beschleunigungen verursachen hohen Kostenaufwand. Es ist daher von Fall zu Fall zu prüfen, ob der Zeitgewinn diese Kosten rechtfertigt.

Die Reibung zwischen Treibrad und Schiene

Treibrad und Schiene wirken zusammen als Reibungsgetriebe. Zwischen Rad und Schiene herrscht die Reibung der Ruhe, falls das Rad nicht "schleudert".

Die Zugkraft wird durch diese *Haftreibung* zwischen angetriebenem Rad und Schiene erzeugt.

Der Ausdruck für die Zugkraft am Radumfang ist

$$\mathbf{Z}_{\mathbf{u}} = \mu \; \mathbf{G}_{\mathbf{r}} \quad | \text{ in kg}$$

wobei $\mu = \text{Reibungsziffer}$ (= Kennwert der Reibung zwischen Rad und Schiene)

G_r = Reibungsgewicht in kg, d. h. die Summe der Gewichte, mit denen die angetriebenen Achsen auf die Schienen drücken. Bei Tenderlokomotiven wird zumeist ein Mittelwert mit halben Vorräten eingesetzt.

2.0 m/sec²

¹⁾ Übergang von Ruhe zur Bewegung, Überwindung des "Abreißwiderstandes" aller geschmierten Gleitflächen, wie Zylinderlaufflächen, Lager usw., besondera bei niedrigen Temperaturen.

Die Höchstwerte μ_{max} , mit denen gerechnet werden kann, sind durch Versuche ermittelt (untenstehendes Bild). Sie fallen mit wachsender Fahrgeschwindigkeit. Bei höheren Geschwindigkeiten streuen die Werte stark.

Die größtmögliche Zugkraft am Radumfang $\mathbf{Z}_{\mathbf{U_{max}}}$ ist die Zugkraft an der Reibungsgrenze. Man bezeichnet sie als Reibungszugkraft Zr

Damit ein "Schleudern" der Räder vermieden wird, muß sein

$$Z_r \leq \mu_{max} \cdot G_r$$

Regelwert $\mu = \frac{1}{5} \div \frac{1}{6} = 200 \div 165 \text{ kg/t}$ (gilt auch für nasse Schienen) Kleinstwert = $\frac{1}{10}$ \div $\frac{1}{20}$ = 100 \div 50 kg/t bei feuchtem Wetter, Schneefall, Eis. Staub. Laub auf den Schienen Noch erreichbar $\mu = 1/3,3 = 300 \text{ kg/t}$ bei Zuhilfenahme eines zuverlässigen Sandstreuers

 $= \frac{1}{3.8} = 263 \text{ kg/t}$ bei mindestens 4 gekuppelten Achsen

ohne Zuhilfe- Vielfach üblich $\, .u = {}^1/_{4,2} = 238 \; {\rm kg/t} \,$ bei Tenderlokomotiven mit vollen Vorräten . nahme eines Sandstreuers

Für Gummireifen auf Stahlschienen kann bei etwa 6 atu Innendruck des Reifens gerechnet werden mit $\mu = \frac{1}{2} \cdot \frac{1}{1.43} = 500 \cdot 700 \text{ kg/t}$.

Der im englischen Lokomotivbau übliche Adhesive factor oder Factor of adhesion ist gleichbedeutend mit dem reziproken Wert von u, beisplelsweise also gleich $1:\mu = 4\div 5$.

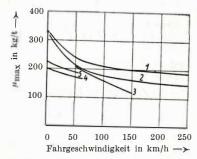


Bild 23. Haftwerte (Reibungsziffern) zwischen Treibrad und Schiene Giiltigfür trockene Schienen. Für feuchte Schienen etwa 70% dieser Werte.

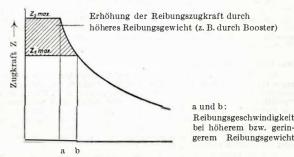
Kurve 1 nach Curtius und Kniffler Kurve 2 nach Kother siehe Kother in .. Eisenbahntechnik" Kurve 3 nach Müller 1949, S. 51

Damit der Fahrplan auch unter ungünstigen Verhältnissen eingehalten werden kann, empfehlen sich nach den Erfahrungen der Deutschen Bundesbahn für die Konstruktion der s-V-Diagramme (siehe S. 66) im Anfahrbereich folgende Reibungswerte:

Kurve 4: $\mu \sim \frac{1}{5.26} = 190 \text{ kg/t}$ für Lokomotiven mit gekuppelten Achsen (Zwilling-Dampflokomotiven, Diesellokomotiven, elektr. Verschiebelokomotiven)

Kurve 5: $\mu \sim 1/4.9 = 204 \text{ kg/t}$ für Drilling-Kolbendampflokomotiven

Für Lokomotiven mit Einzelachs-Antrieb (insbesondere elektrische Lokomotiven) kann eingesetzt werden $\mu \sim \frac{1}{5.82} \div \frac{1}{5.5} = 172 \div 182 \text{ kg/t}$


Die Fahrzeuge sind in der Steuerung so ausgelegt, daß sie die "physikalische" Reibungszugkraft Zr erreichen können.

Das Reibungsgewicht

wird nur im Bereich geringer Geschwindigkeiten (gemäß S. 48 bis zur "Reibungsgeschwindigkeit") voll ausgenutzt, in den meisten Fällen also nur kurzzeitig benötigt. Es ist daher grundsätzlich richtig, eine nur vorübergehend erforderliche Erhöhung des Reibungsgewichtes nicht durch eine zusätzliche Kuppelachse, sondern durch eine abschaltbare Triebachse zu bewirken. Beispiel: Der im Dampflokomotivbau eingeführte "Booster" (siehe S. 229).

Erhöhtes Reibungsgewicht ermöglicht bei gegebenem μ eine höhere Reibungszugkraft. Die Reibungsgeschwindigkeit sinkt entsprechend (siehe untenstehendes Bild).

Die volle Größe des Reibungsgewichtes wird dauernd lediglich zuweilen auf Steilrampen oder beim Betrieb von Schleppzeugen (Lokomotoren, Lokotraktoren. Klein-Lokomotiven auf leichten Förderbahnen) in Anspruch genomnien.

Fahrgeschwindigkeit V -> Bild 24. Zugkraftgewinn durch Erhöhung des Reibungsgewichtes

Das Reibungsgewicht bzw. die Reibungszugkraft ist entscheidend für die Beantwortung folgender Fragen:

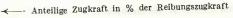
- Welches Zuggewicht bzw. welche Schlepplast kann unter den gegebenen Voraussetzungen in Gang gesetzt und unterhalb der Reibungsgeschwindigkeit befördert werden?
- 2. Mit welcher Anfahrbeschleunigung kann gerechnet werden?
- 3. Welche Steigung kann von dem betreffenden Zug in reinem Reibungsbetrieb genommen werden?

Die absolute Höhe des Reibungsgewichtes ist für diese Ermittlungen weniger wesentlich als sein *relativer* Anteil am Gesamtgewicht des Zuges.

Der Begriff, Spezifisches Zuggewicht" ermöglicht mit genügender Annäherung einen schnellen Überblick über die möglichen Schleppleistungen:

$$\label{eq:gradient} \text{Spezifisches Zuggewicht} = \frac{\text{G}_{\text{Z}}}{\text{G}_{\text{r}}} = \frac{\frac{\text{G}_{(\text{L}+\text{T})} + \text{G}_{\text{W}}}{\text{G}_{\text{r}}}}{\text{G}_{\text{r}}}$$

Für 1 t Reibungsgewicht wird die Reibungszugkraft $Z_\Gamma=1000~\mu$ in kg Dieses Z_Γ kommt restlos der Fortbewegung des Reibungsgewichtes zugute, wenn der Zug ausschließlich angetriebene Achsen aufweist (Tenderlokomotiven ohne Laufachsen bei Leerfahrt, Triebwagen oder Triebzüge mit Allachsantrieb). Es ist in diesem Falle G_{Z} $_{SDeZ}=1$.


Sobald der Zug auch nur eine nicht angetriebene Achse mitführt, wird $G_{Z \text{ spez}} > 1$, und für die Fortbewegung der Gewichtseinheit des Zuges steht nur noch ein entsprechend geringerer Anteil von Z_{r} zur Verfügung.

Diese "Anteilige Zugkraft" beträgt beispielsweise 50 % von \mathbb{Z}_Γ , wenn der Zug gewichtsmäßig zur Hälfte aus "geschlepptem" Gewicht zusammengesetzt ist. Hierbei ist unter "geschlepptem" Gewicht verstanden das auf den nicht angetriebenen Achsen ruhende Gewicht des Triebfahrzeuges einschließlich Tender zuzüglich Gewicht des Wagenzuges.

Das zulüssige Zuggewicht

In Bild 25 (Seite 63) ist — bezogen auf die Gewichtseinheit des Eisenbahnzuges $G_Z=1$ t = 1000 kg — die Anteilige Zugkraft in Abhängigkelt vom Reibungswert μ über dem Spezifischen Zuggewicht, d. h. über dem Prozentverhältnis der Anteiligen Zugkraft zur Reibungszugkraft aufgetragen. Über der Grundlinie sind ferner die Zugwiderstände aufgetragen. Numehr läßt sich aus dem Diagramm abgreifen, welches Zuggewicht unter den gegebenen Umständen mit dem betreftenden Reibungsgewicht befördert werden kann. Zieht man von diesem Zuggewicht das Gewicht des Triebfahrzeuges (einschl. Tender) oder der Triebfahrzeuge ab, so verbleibt die zulüssige Schlepplast.

Für die Fahrt des Zuges auf ebener Strecke ist unabhängig von der Fahrgeschwindigkeit ein gleichbleibender Widerstand von w $\infty=10~kg/t$ vorausgesetzt. Dieser Wert soll den Anfahrwiderstand, den Laufwiderstand und den Krümmungswiderstand einschließen.

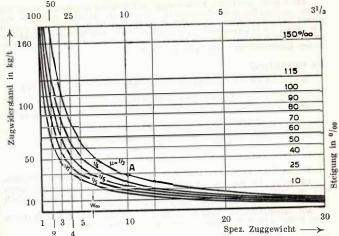


Bild 25. Spezifisches Zuggewicht und Anteilige Zugkraft1)

 ${
m w} \propto 10~{
m kg/t} = {
m angenommener~Anfahr}$ und Laufwiderstand auf ebener, gerader Strecke

Cbliche Werte des spez. Zuggewichtes Gz spez

etwa 1÷3 für Triebwagen

1-:-5 für Triebzüge

2:5 für Lokomotivzüge auf Steilrampen

6-13 für deutsche Personen- und Schnellzüge

7-26 für deutsche Güterzüge

vereinzelt bis 57 für schwerste Güterzüge in USA.

Beispiel: Mit dem Spez. Zuggewicht 10 (Punkt A des Bildes) kann auch unter günstigsten Voraussetzungen (höchstmöglicher Reibungswert $\mu=1/3$ durch Sandstreuen!) keine höhere Zugkraft als etwa 34 kg je Tonne Zuggewicht ausgeübt und keine stärkere Steigung als 24 $^0/_{00}$ überwunden werden.

¹⁾ Siehe "Glasers Annalen" 1948, S. 83 und 101 sowie 1949, S.72/73.

Die erzlelbaren (Anfahr-) Beschleunigungen

Die Summe aus Lauf-, Krümmungs- und Stelgungswiderstand ergibt den Zugwiderstand im Beharrungszustand. Soweit die Anteilige Zugkraft von diesem nicht aufgezehrt wird, steht sie für die Beschleunigung des Zuges zur Verfügung. Zu den aus diesem "Zugkraftüberschuß" resultierenden Beschleunigungen tritt in vielen Fällen die Beschleunigungsreserve, die in dem angenommenen Laufwiderstand von 10 kg/t enthalten ist.

Die Grenzsteigung

Bezeichnet s die Steigung in $^{0}/_{00}$, w den Zugwiderstand in kg/t, so gilt

$$G_z(s + w) = 1000 \, \mu \, G_r$$

Hieraus folgt die für Reibungsbahnen noch mögliche Grenzsteigung zu

$$s = 1000 \mu \cdot \frac{G_r}{G_z} - w = \frac{1000 \mu}{G_{z \text{ spez}}} - w \quad \text{in } ^{0}/_{00}$$

Demnach: Je kleiner $G_{Z\ SPeZ}$ um so stärker die noch mögliche Steigung, Die unter den jeweiligen Umständen möglichen Grenzsteigungen lassen sich aus Bild 25 abgreifen. Der praktische Eisenbahnbetrieb bleibt vielfach aus Gründen erhöhter Sicherheit unter diesen Werten.

Mit gummibereiften Rädern lassen sich bei trockenen Schienen durch reine Reibung noch wesentlich stellere Strecken bewältigen.

Stärkste Steigungen auf Reibungsbahnen

bis	1: 4.2	100	240 0/00	versuchsweise befahren	
	1: 7,88	=	127 % 00	Straßenbahn Lausanne	Trleb-
	1: 9,26	wet	109 %	Straßenbahn Remscheid	wagen
	1:11	112	91 0/00	Herkulesbahn Kassel-Wilhelmshöhe	
	1:16,7	200	60 0/00	Übliche Grenzsteigung für Vollbahnen	
				(Halberstadt-Blankenburg, Ilmenau-Schle	usingen).

Oberhalb der Reibungsgrenze müssen Zahnstangeoder $Zugseil\ \mbox{hinzugezogen}$ werden.

Der Bereich der Zahnstange ist durch folgende Zahlen umrissen:

Gleichzeitiger Reibungs- und Zahnradbetrieb mit "Vereinigten" Reibungs- und Zahnrad-Lokomotiven bzw. Triebwagen bis zu etwa $150^{\,0}/_{00}$, auf noch steileren Strecken reiner Zahnradantrieb.

Im Braunkohlentagebau haben sich folgende Grenzsteigungen als zweckmäßig erwiesen (siehe "Braunkohle" 1949, S. 21):

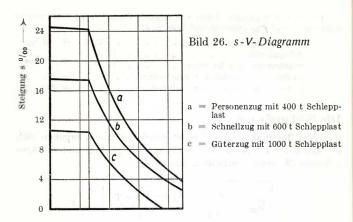
I WICOCH (SIGNAL III	1 . 25	-	40	0/00					
Reibungsbahn	1.20								
Zahnradbahn	1:10	-	100	0/00					
Schrägaufzug mit Kettenzug			200	0./					
Zwillingsschrägaufzug mit Druckwagen.	1: 5								
Doppelzwillingsschrägaufzug mit Gefäßen . 1: 2.5 = 400 %									

Die Schlepplasten

die vom Triebfahrzeug befördert werden können, ergeben sich als Quotient der Zugkraft am (Tender-)Zughaken und des spezifischen Wagenwiderstandes, also

$$G_{w} = \frac{z_{e}}{w_{w}} = \frac{z_{i} - w_{L+T}}{w_{w}} \quad \text{in t}$$

 $\begin{array}{ll} \mbox{mit} \;\; Z_i \;\; = \;\; \mbox{indizierte} \;\; Zugkraft \;\; \mbox{in} \;\; kg \\ Z_e \;\; = \;\; \mbox{effektive} \;\; Zugkraft \;\; (am \;\; Zughaken) \;\; \mbox{in} \;\; kg \end{array}$


Üblich ist die Ermittelung der Schlepplasten für den Beharrungszustand ($\mathbf{w}_{\mathrm{h}}=0$).

Bevorzugt wird das s-V-Diagramm, bei dem die Schlepplasten als Funktion der Steigung s und der Fahrgeschwindigkeit V verzelchnet sind (Beispiel: Bild 26).

Weniger häufig ist das Schlepplasten - Diagramm ("Zuglasten-Schaubild") anzutreffen, das die Steigung in Abhängigkeit von Schlepplast und Fahrgeschwindigkeit darstellt (Beispiel: Bild 27).

Eine zahlenmäßig bestimmte Schlepplast wird nach dem Z-V-Diagramm untersucht. Hierbei läßt sich die für die Beschleunlgung auswertbare "überschüssige Zugkraft" bel der jewelligen Steigung abgreifen (Blld 29).

Für das Aufstellen der Belastungstafeln auf Grund der s-V-Diagramme rechnet die Deutsche Bundesbahn — wie auf S. 61 bereits dargelegt — nicht mit dem tatsächlich erreichbaren, durch die physikalische Reibungsgrenze oder die größte Zylinderfüllung bedingten Z_{imax}. Sie nimmt vielmehr als "größte" Anfahrzugkraft diejenige bel einem niedrigeren Reibungswert nach Bild 24 an. damit das planmäßige Anfahren ohne Schleudern und Zeitverlust auch unter ungünstigen Verhältnissen gesichert ist. Bei einer normal ausgelegten Dampf-Lokomotive entspricht dies einem größten mittleren Kolbendruck von etwa (0,6 p). Die unausgenutzte Fläche 1 in Bild 28 ist die Reserve für Ausnahmefälle sowie für erhöhte Beschleunigungen.

Beide Diagramme beziehen sich auf die Baurcihe 41 der Deutschen Bundesbahn

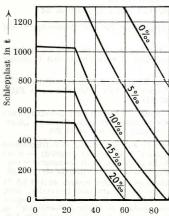
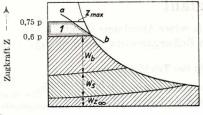



Bild 27. Schlepplasten-Diagramm

Fahrgeschwindigkeit in km/h ->

Bild 28. Auswertung der Zugkraft

 $W_{Z_{\infty}} =$ Laufwiderstand auf ebener Strecke

 $W_S = Steigungswiderstand$

b = üblicher Beschleunigungswiderstand [bei Dampflok einem mittleren Kolbendruck von ca. 0.6 p entsprechend]

Fahrgeschwindigkeit V -----

 Z_{max} = höchstmögliche Maschinenzugkraft [bei Danipflok der Höchstfüllung entsprechend, wobei der mittlere Kolbendruck etwa 0,75 p beträgt]

а—b = Einschränkung von Z_{max} durch die physikalische Reibungsgrenze

Fläche 1 = Reserve für kurzzeitige Beschleunigungen, beispielsweise beim Anfahren. Bei Steilrampenfahrten kann Fläche 1 verschwindend klein werden.

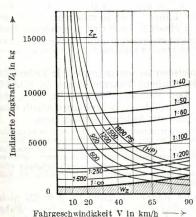


Bild 29. Beispiel eines Z-V-Diagramms für ein bestimmtes Zuggewicht bei verschiedenen Maschinenleistungen

Zuggewicht 400

 W_Z = Laufwiderstand des Zuges auf ebener Strecke in kg

Z_r = Reibungszugkraft in kg

Der Fahrzeuglauf

Das Laufwerk wird in seiner Anordnung beeinflußt von

dem erforderlichen Reibungsgewicht und dem zugelassenen Achsdruck

dem Gesamtgewicht des Triebfahrzeuges

der Rücksicht auf ruhigen Lauf der gewünschten Bogenläufigkeit

d. h. Schonung von Fahrzeug und Gleis, Vermeiden der Entgleisungsgefahr

Die Zahl der angetriebenen Achsen folgert aus Reibungsgewicht und Achsdruck.

- Laufachsen werden erforderlich, wenn das Fahrzeuggewicht auf den angetriebenen Achsen allein nicht untergebracht werden kann, oder wenn bei höheren Fahrgeschwindigkeiten eine Verbesserung der "Führung" im Gleis angezeigt erscheint.
- Ruhiger Lauf ist in der Geraden wie im Gleisbogen zu erwarten, wenn die "geführte Länge" jeweils möglichst groß und die "überhängenden Massen" so gering wie möglich sind. Der feste Achsstand wird im allgemeinen möglichst kurz gehalten (vielfach gleich Null), doch ist zuweilen auch ein größerer fester Achsstand von Vorteil.
- Die Sieherheit gegen Entgleisung ist um so größer, je kleiner die Richtkraft bzw. der seitliche Führungsdruck (s. Bild 32) gehalten werden. Der Führungsdruck sollte 90 % des ruhenden Raddruckes nicht überschreiten; deshalb möglichst 2 oder 3 Achsen zur Führung heranziehen.

Rauhe Anlauffläche des Spurkranzes erhöht die Entgleisungsgefahr, daher Polieren der Anlauffläche und Spurkranzeschmierung von Vorteil. Die Gefahr wächst auch mit Abnutzung des Spurkranzes (wegen Vorverlagerung des Berührungspunktes) und der Zeitdauer, während welcher die Seitendrücke wirken. Sie nimmt jedoch entgegen einer weit verbreiteten Ansicht mit wachsendem Raddurchmesser ab, falls die Spurkranzabnutzungen mäßig bleiben.

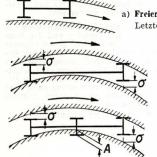
Der Anlaufwinkel führender Räder soll nach TV § 67 (2) nicht größer als 2° sein. Bei Fahrzeugen für geringe Fahrgeschwindigkeit (z. B. Baulok) sind bis etwa 4° üblich.

Nach Eckhardt (Organ 1941, S. 11) ist der zulässige Anlaufwinkel « auch vom Raddurchmesser abhängig; nach Vogel von der Richtkraft P (siehe Bild 32). Die Vogelsche Kennzahl Ca = Pa gibt Aufschluß über

die zu erwartende Abnutzung von Spurkranz und Bogenaußenschiene. Sie sollte einen Wert von 100 kg nicht überschreiten. — Über Maßnahmen zur Verringerung des Anlaufwinkels siehe S. 72 unten.

- Die Spurkranzabnutzung ist um so stärker, je größer der Anlaufwinkel, die Spurerweiterung und die seitliche Richtkraft, je rauher die Anlauffäche und je kleiner der Raddurchmesser. Radsätze, bei denen die Laufkreise der beiden Räder im Durchmesser auch nur geringfügig von einander abweichen, versuchen in der Geraden einseitig anzulaufen und verursachen vorzeitigen Verschleiß des anlaufenden Spurkranzes.
- Die Lebensdauer der Radreifen hängt von Bauart und Verwendungszweck des Fahrzeuges, Zustand des Oberbaues, Art des Verkehrs und den Baustoffen von Rad und Schiene ab. Einen rohen Anhalt geben folgende Zahlen für Vollbahnen bei 75 mm Reifendicke: Bei Schnellzuglokomotiven Radreifenberichtigung nach einer Laufleistung von rund 120 000 km, Radreifen-Brneuerung nach 500 000-900 000 km Gesamtlaufleistung, Lebensdauer 4-8 Jahre. Bei Güterzuglokomotiven Berichtigung nach rund 60 000 km Laufleistung, Erneuerung nach rund 340 000 km Gesamtlaufleistung, Lebensdauer etwa 5 Jahre. Mittlere Lebensdauer der Radreifen von Wagenradsätzen etwa 16 Jahre. Radreifenschmierung verlängert die Lebensdauer wesentlich.

Beim Bogenlauf


sucht sich das Fahrzeug in Richtung seiner Längsachse zu bewegen. Es wird in die wechselnde Fahrtrichtung durch die seitlichen Richtkräfte abgedrängt, die die Schienen auf die "führenden" Achsen ausüben. Welche Stellung das Fahrzeug im Gleis einnimmt, hängt von vielerlei Faktoren ab, kann also nicht ohne genauere Untersuchung beurteilt werden. Man darf jedoch für die Untersuchung des Bogenlaufes mit genügender Genauigkeit in erster Annäherung voraussetzen, daß sich die letzte feste Achse radial zum Gleisbogen einzustellen versucht.

Man pflegte diese Einstellung des Fahrzeuges vielfach als die "statische" zu bezeichnen und stellte ihr die "dynamische" gegenüber, bei der — wie man annahm — unter dem Einfluß der Fliehkraft bei hohen Fahrgeschwindigkeiten (etwa von 70 km/h an) **elle* Achsen an der äußeren Schiene anzulaufen versuchen. In Wirklichkeit trifft das nicht zu. Diese Einstellung ist vielmehr nur dann möglich, wenn zusätzlich am Fahrzeugende eine von einem anderen Fahrzeug herrührende Kraft nach außen drückt.

In Gleisbögen mit den schon vielfach üblichen kleinen Spurspielen herrscht die sogenannte "Spießgangstellung" vor.

Bei geringer Fahrgeschwindigkeit oder Stillstand sucht das Fahrzeug in überhöhtem Gleis unter Überwindung der Reibung auch vorn nach innen zu rutschen. Dieser "Abtriebsüberschuß" kann zu sehr hohen Drücken an der Innenschiene führen (Entgleisungsgefahr!).

Große Führungskräfte können die ordnungsgemäße Gleislage verändern und einen unstetigen Verlauf des Gleisbogens zur Folge haben. Die Beanspruchungen treten dann stoßartig auf und verstärken den Übelstand fortlaufend. Gleiche Erscheinungen sind beim Gleisbogen ohne Übergangskurve zu erwarten. Es müssen also auch in Rücksicht auf die Gleislage möglichst niedrige Richtkräfte angestrebt werden.

a) Freier Lauf

Letzte feste Achse annähernd radial eingestellt.

Letzte feste Achse läuft innen an, da der feste Achsstand verhältnismäßig groß gegenüber Halbmesser des Gleisbogens und Spurspiel

Stellung eines Fahrzeuges mit Zwischenradsatz.

Bild 30. Grundsätzliche Fälle der Fahrzeugstellung im Gleisbogen


Die Spurkränze von "Zwischenradsätzen" müssen häufig um das Maß A schwächer gedreht sein (Bild 30 c). Besser noch ist Seitenverschieblichkeit um A + g. da diese Achsen dann keine starken, der Fahrtrichtungsänderung entgegen wirkenden Momente ausüben. Für das Durchfahren von Bogenweichen kommt zusätzlich noch die "Rückenschwächung" des Spurkranzes in Betracht. Spurkranzlose Radsitze sind nicht zu empfehlen, da sich mit der Zeit ein "falscher" Spurkranz herausbildet und damit der ursprüngliche Zweck hinfällig wird. Zudem klettern sie unter Umständen auf Flügelschienen von Herzstücken auf und verursachen hierbei starke Stoßbeanspruchungen.

Bild 31. Rad und Schiene

- 1 = übliche Spurkranzschwächung
- 2 = Rückenschwächung

Die Gestaltung des Laufwerkes

richtet sich nach der Forderung, daß die engsten Gleisbögen ohne Schwierigkeiten und mit erträglichen Führungskräften durchfahren werden können und in den Herzstücken der Weichen und Kreuzungen möglichst kein "Verdrängen" fester Zwischenradsätze auftritt.

Bild 32.Die Kräfte am anlaufenden Rad (Begriffsbestimmungen)

- $\alpha = Anlaufwinkel$
- N_A = senkrechter Normaldruck (im wesentlichen Reaktion des Raddruckes Q)
 - N = Spurkranz-Normaldruck (nachinnen und schräg nach oben gerichtet)
 - P = Richtkraft oder Schienenrichtkraft = waagerechte Komponente des Spurkranz-Normaldruckes, der genau genug senkrecht zur Fahrzeug-Längsachse angenommen werden kann
 - f = Reibungswert an den Radaufstandspunkten (neuerdings mit u bezeichnet)
 - ξ = Winkel zwischen Radsatz-Querrichtung und Gleitrichtung des Rades nach innen
- f.N = Gleitreibungswiderstand zwischen Spurkranz und Schienenflanke
- f.N A = waagerechter Gleitreibungswiderstand zwischen Schienenkopf und Radreifen-Lauffläche.

Reibungsmittelpunkt = Fußpunkt des Lotes vom Mittelpunkt des Gleisbogens auf die Fahrzeug-Längsachse bzw. die Gestell-Längsachse. Bei Fahrzeugen mit Nebengestellen treten mehrere Reibungsmittelpunkte auf.

Aufschluß über die Gesamtanstrengung des Fahrzeuges und des Gleises in Querrichtung gibt der Führungsdruck Y≈ P-f · NA · cos š (bei echten Richtkräften)

Diese Forderungen bedingen in den meisten Fällen besondere bauliche Maßnahmen:

Man unterscheidet nach Heumann

- 1. Einrahmenfahrzeuge: Sämtliche Radsätze in gemeinsamem Rahmen. Querverschieblichkeit eines oder mehrerer Radsitze, wobei diese sich entweder unabhängig voneinander verschieben können (Gölsdorf-Achsen) oder zu zweien in einem Beugniot-Gestell vereinigt sind (Bild 36).
- 2. Gliederfahrzeuge: Einrahmiges Hauptgestell, einer oder mehrere Endradsätze als Lenkachsen oder in Drehgestellen angeordnet.
- 3. Gelenkfahrzeuge: Aufteilung des Fahrzeuges in Teilfahrzeuge oder Gestelle, die an ihren Enden durch Gelenke miteinander verbunden sind (z. B. Bauart Mallet, zwei- oder mehrteilige elektrische oder Motor-Fahrzeuge).

- 4. Brückenfahrzeuge: Unterteilung des Laufwerkes in zwei Drehgestelle, die durch Mittelgelenke (Drehzapfen) mit dem auf ihnen ruhenden Fahrzeugkörper oder Hauptrahmen, unter sich aber nicht unmittelbar verbunden sind (z. B. Drehgestell-Wagen, Garratt-, Fairlie-, Meyer-Lokomotiven).
- Kombinationeu zwischen 1. bis 4. Beispiel: Gelenklokomotive mit Brücke wie E 94 der Deutschen Bundesbahn (Bild 313).

Nach Heumann ist beim Durchfahren des Gleisbogens das Gelenkfahrzeug hinsichtlich seitlicher Schienendrücke, Krümmungswiderstand und Spurkranzverschleiß günstiger als das Brückenfahrzeug, das Gliederfahrzeug hinsichtlich des Spurkranzverschleißes dem Brückenfahrzeug teilweise überlegen; beim Einfahren in den Gleisbogen das Brückenfahrzeug infolge der doppelten Übersetzungswirkung der Drehgestelle sehr günstig, das Gelenkfahrzeug sehr ungünstig, das Gliederfahrzeug insbesondere bei der Einfahrt in flachere Bögen sehr ungünstig.

Im Endergebnis liegen die Vorzüge beim Brückenfahrzeug, bedingt durch dessen verhältnismäßig niedrige Richtkräfte. Die neuere Entwicklung strebt daher an, nach dem Vorbild der elektrischen und der Motorlokomotive auch die Dampflokomotive als Brückenfahrzeug auszubilden oder sie in der üblichen Form des Gliederfahrzeuges weitgehend dem Brückenfahrzeug anzugleichen. Das kann dadurch geschehen, daß die Endachsen zu Gestellen mit festem Drehpunkt vereinigt werden und die Zwischenradsätze — soweit möglich — Seitenverschieblichkeit erhalten.

Man kommt damit dem Ziele sehr nahe, daß alle Führungs-Achsen tatsächlich ständig an der Schiene "geführt" werden und sich somit die Stellung des Fahrzeuges im Gleisbogen bei den verschiedenen Betriebszuständen nur wenig ändert. Beim üblichen Krauss-Helmholtz-Gestell mit seitlich verschiebbarem Drehpunkt sowie dem seitlich ausschwenkbaren Laufachs-Drehgestell (amerikanisches Drehgestell) ist dies nicht der Fall.

Einrahmen-Fahrzeuge

(im wesentlichen also Lokomotiven *ohne* ausschwenkbare Laufachsen) eignen sich in der üblichen Ausführung wegen der "überhängenden Massen" nur für verhältnismäßig geringe Fahrgeschwindigkeiten. Beugniot-Endgestelle erlauben höhere Geschwindigkeiten.

Seitlich verschiebbare Radsätze (Gölsdorf-Achsen) erleichtern bzw. ermöglichen das Durchfahren des Gleisbogens. Sie zeichnen sich durch einfache Bauweise aus und erfordern keine zusätzlichen Baugewichte (Beispiele auf Seite 82). Seitlich verschiebbare Endachsen verstärken die Schlingerbewegungen, verschlechtern das Einfahren in den Gleisbogen und erhöhen den seitlichen Schienendruck auf die führende Achse, daher auch starke Spurkranzabnutzung. Es empfiehlt sich, solche Achsen mit Rückstellvorricht ung zu versehen und damit zur Führung der Lokomotive heranzuziehen. Gleichzeitig wird damit erreicht, daß beim Einfahren die Beanspruchungen des Fahrzeugrahmens milder ausfallen.

Klien-Lindner-Hohlachsen wie auch durch Zahnräder gekuppelte Endachsen (Seite 378—380) haben gegenüber den einfachen seitlich verschiebbaren (Gölsdorf-)Achsen den Vorteil kleinerer Anlaufwinkel. Sie sind zumeist mit Rückstellfedern versehen. Einen minimalen Anlaufwinkel ermöglicht die Liechty-Achssteuerung (Seite 400).

Gliederfahrzeuge

(wie Lok mit ausschwenkbaren Laufachsen) können durch einarmige "Lenk"-Gestelle oder durch zweiarmige "Dreh"-Gestelle geführt werden, wenn die Gestelle durch kräftige Rückstellvorrichtungen für sanftes Einlaufen in den Kurven und Dämpfen der Schlingerbewegungen sorgen. Bei Rückstellung durch Federn wird das anteilige Lokomotivgewicht über Gleitflächen auf das Dreh- oder Lenkgestell abgestützt, die infolge der stark schwankenden, unkontrollierten Reibungswiderstände zuweilen ein ruckweises Einstellen des Gestells zur Folge haben. Vorspannung der Rückstellfeder etwa 10% des Achsdruckes. Hiervon 1/20 Spannungserhöhung je cm Durchbiegung. Die Rückstellung durch Pendelwiegen oder Pendelstützen hat den Nachteil, daß der Hauptrahmen in der Gleiskrümmung durch das Ausschlagen der Pendel angehoben wird und die gekuppelten Achsen entlastet, falls ihre Federn nicht mit denen der Laufachse verbunden sind. Dennoch wird diese Anordnung vielfach bevorzugt, da hier eine stetige Bewegung des Gestells gesichert ist. Zwei- und mehrachsige Drehgestelle mit testem Drehpunkt bedürfen keiner Rückstellvorrichtung.

Lenkgestelle

Das Lenkgestell mit Drehpunkt wird üblicherweise als Bisselgestell ausgeführt, das Drehgestell erscheint mit 2 Laufachsen in der bekannten Form des "amerikanischen" Drehgestells oder als Vereinigung einer Lauf- und einer Kuppelachse in einem Rahmen als Krauß-Helmholtz-Gestell und Abarten. Die genannten Drehgestelle eignen sich für die höchsten Fahrgeschwindigkeiten; ihre Drehp unkte werden zumeist seitlich verschiebbar angeordnet.

Das Zara-Gestell unterscheidet sich vom Krauß-Helmholtz-Gestell dadurch, daß der Drehgestellrahmen nicht zur toten Last, sondern zum abgefederten Teil der Lokomotive gehört.

Die theoretische Deichsellänge eines Lenkgestells ist bei radialer Stellung der Achse $1=\frac{s^2-s_1^2}{2s}$, wenn $s=s_1+a$ mit a=Abstand der Lenkachse von der ersten im Hauptrahmen fest gelagerten Achse und $s_1=$ der Abstand der ersten im Hauptrahmen fest gelagerten Achse von einem ihr parallelen Radius der Gleiskrümmung. 1 ist vom Halbmesser der Gleiskrümmung unabhängig.

Das HVI-Gestell (Henschel-Vogel 1-Gestell, Bild, 34) ist eine Fortentwicklung des Bisselgestells. Bei ihm ist das Deichselgestell nicht am Hauptrahmen,
sondern (ähnlich dem Helmholtz-Gestell) an der benachbarten Kuppelachse
angelenkt und damit unabhängig von den durch die Lagerspiele bedingten
Eigenschwingungen des Hauptrahmens. Es folgert hieraus größere Laufruhe
des HVI-Gestells.

Die Adams-Achse schwenkt, um einen gedachten Drehpunkt in gekrümmten Führungen gleitend, seitlich aus. Sie ist als deichselloses Lenkgestell aufzufassen, eignet sich aber als führende Achse nicht für hohe Fahrgeschwindigkeiten, da sie sich in der Führung ruckweise einstellt. Wie bei den obenerwähnten Gleitstitzen treten auch hier sehr stark schwankende unkontrollierbare Reibungswiderstände auf. Diese fallen geringer aus bei Federdämpfung in Querrichtung.

Das deichsellose Henschel-Lenkgestell (siehe Bild 324 auf S. 398) ist für höchste Fahrgeschwindigkeiten geeignet und hat bei elektrischen und Dieselelektrischen Lokomotiven (Bild 344/45 auf S. 406) Verwendung gefunden. Der üblicherweise von der Deichsel des Bisselgestells eingenommene Raum wird vom Tatzenlagermotor beansprucht. Es gleicht in seiner Wirkungsweise den üblichen Bisselgestellen: Auf der in Längsmittelebene der Lokomotive geneigt im Hauptrahmen gelagerten Lenkerwelle 1 ist "vorn" ein langer, "hinten" ein kurzer Lenkerhebel (2 und 3) aufgeschrumpft. Die Enden dieser beiden Lenkerhebel liegen bei Mittelstellung des Lenkgestells in Höhe der Laufachsmitte. Die Verbindungslinie der Hebelenden schneidet die Mittellinie der Lenkerwelle im ideellen Drehpunkt P des Lenkgestells. Beim Drehen der Lenkerwelle bewegen sich die Hebelenden auf dem Mantel eines Kegels, dessen Spitze im ideellen Drehpunkt des Lenkgestells liegt. Die Enden der Lenkerhebel sind achslagerartig derart im Lenkgestellrahmen geführt, daß der Lenkgestellrahmen der Bewegung der Hebelenden nur in waagerechter, nicht aber in senkrechter Ebene folgen kann. Beim Ausschlagen der Lenkerwelle in der Gleiskrümmung folgt das Lenkgestell also der Horizontalprojektion der Verbindungslinie der Hebelenden. Da auch diese stets durch die Kegelspitze, mithin auch durch den ideellen Drehpunkt des Lenkgestells geht, ist die Wirkungsweise eines Bisselgestells erwiesen.

Wird — wie in Bild 324 strichpunktiert angegeben — die Laufachse von der benachbarten, seitlich verschiebbaren Kuppel- oder Treibachse durch im Hauptrahmen gelagerte, an den Stirnseiten der Achswellen angreifende seitliche Führungshebel 4 hinsichtlich des Seitenausschlages in Abhängigkeit gebracht, so ergibt sich die Wirkungsweise eines Krau β -Helmholtz-Drehgestells mit festem Drehpunkt.

Die Größe des Laufachs-Ausschlages ist auf Bild 324 mit s angegeben.

Zweiachsige Bisselgestelle sind lauftechnisch nicht günstiger als einachsige, denn es kann immer nur eine der beiden Achsen wirksam führen. Das zweiachsige Bisselgestell ersetzt man in USA häufig durch ein zweiachsiges selbstindiges Fahrzeug, welches zwischen Lokomotivrahmen und Tender geschaltet ist und die anteilige Kessellast unmittelbar, also olme Vermittlung des Lokomotiv-Hauptrahmens übernimmt.

Dreh-bzw. Laufgestelle mit festem Drehpunkt für Triehfahrzeuge

- 1. bei denen zwei Achsen führen
 - a) das Krauß-Helmholtz-Gestell mit festem Drehpunkt. Eine im Hauptrahmen gelagerte, seitlich verschiebbare Kuppelachse (zumeist End-Kuppelachse) ist mit der benachbarten Laufachse gelenkig durch einen Hebel verbunden, der sich um einen unverschieblichen Punkt des Hauptrahmens dreht.¹)
 - b) das (Baldwin-)Beugniot-Gestell (Bild 36). Zwei im Hauptrahmen seitlich verschiebbar gelagerte Radsätze sind durch einen Hebel mit festem Drehpunkt derart voneinander abhängig, daß sie sich beim Ausschwenken des Hebels in entgegengesetzter Richtung verschieben. Beide Achsen führen gleichzeitig. Der Beugniot-Hebel verleiht dem Fahrzeug hervorragende Laufruhe (die Höchstgeschwindigkeit der E-Tenderlokomotive Reihe 94 [T 16] der Deutschen Bundesbahn konnte durch nachträglich eingebaute Beugniot-Hebel von 45 auf 70 km/h gesteigert werden).
- 2. bei denen drei Achsen führen:
 - a) das Eckhardt II Gestell (Bild 39). Es vereinigt ein Beugniot-Gestell (2 Kuppelachsen) mit einer bisselartig angelenkten Laufachse. Ritckstellvorrichtung lediglich für die Bisselachse.
 - b) das HV 2-Gestell (Henschel-Vogel 2-Gestell, Bild 41). Vereinigung eines Helmholtz-Gestells mit festem Drehpunkt (seitlich verschiebbare Kuppelachse und ausschwenkbare Laufachse) mit einer weiteren am mittleren Laufradsatz bisselartig angelenkten Laufachse. Rückstellvorrichtung lediglich für die End-Laufachse oder zwischen beiden Laufachsen.
 - c) das Schwartzkopff-Eckhardt-Gestell (Bild 38). Verbindung einer Laufachse mit den beiden folgenden Kuppelachsen. Beide Kuppelachsen in einem Beugniot-Gestell vereinigt, Laufachse bisselartig an die zweite Kuppelachse angelenkt.
 - d) das Meincke-Gestell (Bild 37). Verbindung einer Laufachse mit den beiden folgenden Kuppelachsen. Beide Kuppelachsen in einem Beugniot-Gestell vereinigt, dessen Drehpunkt nicht im Hauptrahmen, sondern am Endpunkt eines zweiten Beugniot-Hebels gelagert ist. Dieser zweite Hebel hat einen festen Drehpunkt im Hauptrahmen und faßt vorn die radial ausschwenkbare Laufachse.
 - e) das Lotter-Gestell (Bild 40). Verbindung eines zweiachsigen amerikanischen Drehgestells mit der nachfolgenden Kuppelachse durch einen Beugniot-Hebel. Der Hebel greift vorn am Drehzapfen des Drehgestells an, sein Drehpunkt ist fest im Hauptrahmen gelagert.
- 3. bei denen vier Achsen führen:

Das Kando-Gestell (Bild 42). Es erfaßt 2 Laufachsen und 2 gekuppelte Achsen, zwingt also 4 Achsen gleichzeitig zum Führen des Fahrzeuges. Es kann als eine Vereinigung des Lotter-Gestells mit dem Meineke-Gestell aufgefaßt werden.

Drehgestell-Skizzen auf den folgenden Seiten.

 Bild 35 zeigt das Krauß-Helmholtz-Gestell mit seitlich verschiebbarem Drehpunkt.

Dreh- und Lenkgestelle

Erläuterungen auf Seite 73 und 75

× feste Achse

seitenverschiebliche Achse

ausschwenkbare Achse

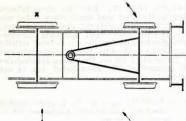


Bild 33. Bissel-Gestell

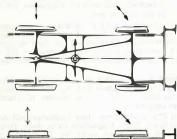


Bild 34. Krauss-Helmholtz-Gestell

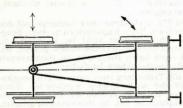


Bild 35. Henschel-Bangert-Gestell

Das Henschel-Bangert-Gestell kann aufgefaßt werden als Krauss-Helmholtz-Gestell ohne Drehzapfen, wobei die in diesem angreifenden Rückstellkräfte bzw. -vorrichtungen anteilmäßig auf die Laufachse und die Kuppelachse verteilt sind und dort jeweils direkt angreifen. Sowohl die Laufachse wie die Treibachse sind mit Rückstellvorrichtung versehen.

Das Henschel-Vogel I - Gestell unterscheidet sich vom Henschel-Bangert-Gestell dadurch, daß die Kuppelachse, an die die Bisselachse nit ihrem Drehpunkt angelenkt ist, nicht seitenverschieblich ist.

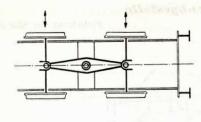


Bild 36. Baldwin-Beugniot-Gestell

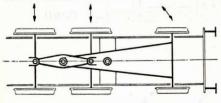


Bild 37. Meineke-Gestell

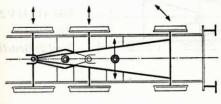


Bild 38. Schwartzkopff-Eckhardt-Gestell

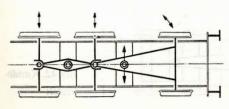


Bild 39. Eckhardt II
Gestell

Dreh- und Lenkgestelle

Fortsetzung von Seite 76/77

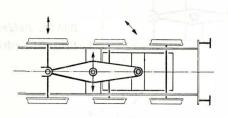


Bild 40. Lotter-Gestell

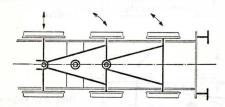


Bild 41. H V 2 (Henschel -Vogel 2)-Gestell

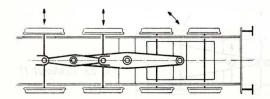


Bild42. Kando-Gestell

Beispiele für Lokomotiven verschiedener Achsanordnung beim Durchfahren eines Gleisbogens

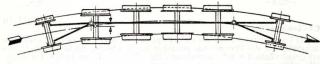


Bild 43

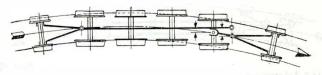


Bild 44

1D1 - Lokomotiven

- I. An beiden Enden je ein Bisselgestell mit Rückstellvorrichtung. Letzte Kuppelachse ohne Rückstellung seitlich verschiebbar. Führung bei Vorwärtsfahrt durch die vordere Kuppelachse, bei Rückwärtsfahrt durch die 3. Kuppelachse, die infolge der großen, in seitlicher Richtung "überhängenden" Massen trotz des mildernden Einflusses der Bissel-Rückstellung einen verhältnismäßig hohen Seitendruck aufzunehmen hat. Nur in schärferen Gleisbögen führt die Gölsdorf-Achse (Bild 43).
- II. Gegenüber Fall I verbesserte Anordnung: Vorderes Krauß-Helmholtz-Gestell mit seitlich verschiebbarem Drehpunkt. Bei Vorwärtsfahrt sind höchste Geschwindigkeiten zulässig (Bild 44). - Höchste Geschwindigkeiten für beide Fahrtrichtungen, wenn die beiden letzten Achsen ebenfalls in einem Krauß-Helmholtz-Gestell vereinigt sind.
- III. Hinteres Krauß-Helmholtz-Gestell mit seitenverschieblichem Drehpunkt, vorderes Eckhardt II-Gestell. Fester Achsstand gleich Null. Für beide Fahrtrichtungen höchste Geschwindigkeiten (untenstehendes Bild).

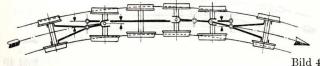
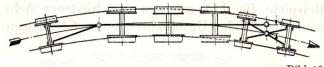



Bild 45

2 C1-Lokomotive

Bild 4

Bei Vorwärtsfahrt führt die erste Kuppelachse, deren Seitendruck durch die Rückstellkräfte des Drehgestells gemildert ist, in scharfen Gleisbögen u. U. das Drehgestell allein. Bei Rückwärtsfahrt führt die letzte Kuppelachse. Die Rückstellvorrichtung des Bisselgestells verringert den Seitendruck der letzten Kuppelachse. Hohe Geschwindigkeit nur für Vorwärtsfahrt zulässig (Bild 46).

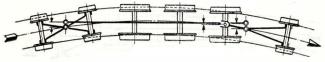


Bild 47

1 C2 - Lokomotlven

- Vorderes Krauß-Helmholtz-Gestell, hinteres amerikanisches Drehgestell, beide mit seitlich verschiebbarem Drehpunkt. Für beide Fahrtrichtungen sind höchste Geschwindigkeiten zugelassen (Bild 47).
- II. Hinteres amerikanisches Drehgestell durch zweiachsiges Bisselgestell ersetzt, dessen Vorderachse möglichst seitenverschieblich. Gegenüber Fall I verkürzte geführte Länge, hohe Geschwindigkeit nur für Vorwärtsfahrt zulässig (Bild 48).
- III. Die drei letzten Achsen zu einem HV2-Gestell vereinigt. Fester Achsstand gleich Null. Für beide Fahrtrichtungen höchste Geschwindigkeiten (Bild49).

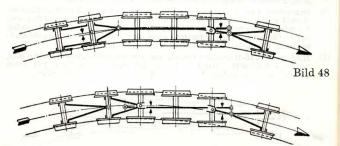
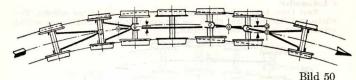



Bild 49

- 1-

1 D 2- Lokomotive

Vorderes Eckhardt II-Gestell, hinteres HV2-Gestell, Spurkränze der mitleren Achse nach Bedarf geschwächt. Fester Achsstand gleich Null (Bild 50).

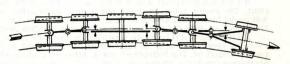


Bild 51

1 E - Lokomotlven

I. Vorderes Krauß-Helmholtz-Gestell mit seitenverschieblichem Drehpunkt. Letzte Kuppelachse seitenverschieblich nach Gölsdorf, mittlere Kuppelachse mit geschwächten Spurkränzen.
II. Wie Fall I, jedoch die beiden letzten Kuppelachsen zu einem Beugniot-

Gestell zusammengefaßt.

 Vorderes Eckhardt II-Gestell, hinteres Beugniot-Gestell, Vierte Achse (Treibachse) unverschieblich gelagert, ihre Spurkränze nach Bedarf geschwächt. Fester Achsstand gleich Null (Bild 51).

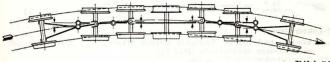


Bild 52

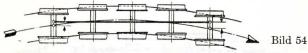
1 E 1 - Lokomotiven

- Vorderes Krauß-Helmholtz-Gestell mit seitlich verschiebbarem Drehpunkt, hinteres Bisselgestell, Spurkränze der 3. und der 4. Kuppelachse schwächer gedreht.
- II. Vorderes und hinteres Eckhardt II-Gestell. Mittlere Achse fest im Rahmen gelagert, ihre Spurkränze nach Bedarf geschwächt. Fester Achsstand gleich Null (Bild 52).

C-Lokomotive

Zwei feste Achsen, Spurkränze der Mittelachse schwächer gedreht. Vorwärts- und Rückwärtslauf gleich. - Bessere Anordnung: Mittelachse seitlich verschiebbar, letzte Achse Treibachse.

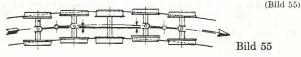
D-Lokomotiven


I. Zwei feste Achsen. Zweite Achse zwecks Verringerung der seitlichen Schienendrücke als Gölsdorf-Achse ausgebildet. Seitlich verschiebbare Eudachse, daher große in waagerechter Richtung überhängende Masse mit ihren lauf technischen Nachteilen.

Bei Vorwärtsfahrt laufen zwar 2 Achsen an, aber nur die erste Achse führt. Die zweite Achse überträgt nur geringe Richtkräfte, sofern ihr Seitenspiel hinreichend groß gewählt ist. Die hintere feste (dritte) Achse läuft innen an, falls das Seitenspiel der Endachse reichlich genug ist.

Bei Rückwärtsfahrt laufen die verschiebbare Endachse und die 3. Achse außen an, aber nur die 3. Achse führt, sofern das Seitenspiel der Endachse nicht erschöpft ist. Der Seitendruck der 3. Achse wird infolge der großen überhängenden Masse unerwünscht hoch. — Von einer gewissen "Kleinheit" der Gleiskrümmung ab übernimmt die verschiebbare Endachse die Führung, deren Seitenspiel nunmehr erschöpft ist. Die 3. Achse läuft dann außen nicht mehr an. Dieser Fall ist der gilnstigere, da wesentlich größere geführte Länge, wenn auch die Spurkranzabnutzung größer ausfällt (Bild 53).

II. Beide Mittelachsen fest im Hauptrahmen gelagert, Endachsen radial ausschwenkbar als Hohlachsen (s. S. 380) oder mit Zahnradkupplung nach S. 378. Dann kleine Anlauf winkel.


III. Erste und zweite Achse in einem Beugniot-Gestell vereinigt, dritte und vierte Achse fest. Spurkränze der dritten Achse u. U. schwächer gedreht. Höhere Fahrgeschwindigkeiten zulässig.

E-Lokomotiven

I. Vordere und hintere Endachse seitlich verschiebbar, Mittelachse mit geschwächten Spurkränzen (Bild 54). II. Zahnradgekuppelte Endachsen.

III. 1. und 2. bzw. 4. und 5. Achse zu je einem Beugniot-Gestell vereinigt. Dann höhere Fahrgeschwindigkeiten möglich (bei Regelspur bis etwa 80 km/h).

Die Untersuchung des Bogenlaufes

hat zum Ziel die Ermittlung:

a) der Richtkräfte bzw. Führungsdrücke

b) der Kennzahlen für die Abnutzung der Spurkränze

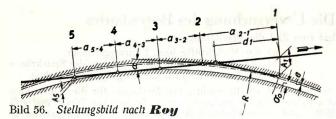
c) der Kennzahlen für die Entgleisungssicherheit

die insgesamt als die wichtigsten Merkmale für die Beurteilung des Fahrzeuglaufes anzusehen sind. In welcher Weise und mit Hilfe welcherverschiedenen Methoden die Untersuchungen durchzuführen sind, hat Heumann in "Grundzüge der Führung der Schienenfahrzeuge" in »Elektrische Bahnen« 1951, S. 81 u. f. dargelegt.

Die tatsächliche Stellung des Fahrzeuges im Gleisbogen ist durch die Kräfte bedingt, die an Gleis und Fahrzeug angreifen oder in den Rückstellvorrichtungen wirken. Sie läßt sich nur durch Berechnung ermitteln. Hierbei muß man von einer geschätzten Stellung ausgehen und diese dann nach den Ergebnissen

der Rechnung korrigieren.

Die angreifenden Kräfte werden an Hand des vorläufigen (geschätzten) Stellungsbildes nach dem Minimum-Verfahren von Heumann oder dem rechnerischen Verfahren Uebelacker-Vogel ermittelt. Diese Untersuchung stellt fest. ob das geschätzte Stellungsbild den tatsächlichen Verhältnissen entspricht oder nicht. Ist dies nicht der Fall, so muß die Fahrzeugstellung berichtigt und die Berechnung in zweiter, u. U. auch in dritter Annäherung wiederholt werden.


Das Fahrzeug steht "richtig" im Gleisbogen, wenn seine Längsachse im "Reibungsmittelpunkt" senkrecht zum Halbmesser des Gleisbogens verläuft. Nach Heumann stellt sich das Fahrzeug im Gleisbogen bei hinterem Freilauf so ein, daß die Richtkraft (s. Bild 32) der außen führenden Radsätze ein Minimum wird. Über das Minimum -Verfahren siehe Heumann in Die Lokomotive« 1942, S. 1 und 20 sowie »Elektrische Bahnen« 1951, S. 109 u.f. -Nöthen in Die Lokomotive 1942, S. 129 (Anwendungsbeispiel). — Heumann im »Organ« 1941, S. 209 (betr. Schubachsen, d. h. seitlich verschiebbare Achsen).

Das Stellungsbild wird nach Roy oder Vogel dargestellt.

Für die geschätzte Stellung gelte als Grundsatz: Die in Fahrtrichtung erste feste Achse sucht außen anzulaufen, die letzte feste Achse sucht innen anzulaufen oder aber bei großem Spurspiel frei zu laufen, d. h. sich annähernd radial zum Mittelpunkt des Gleisbogens einzustellen.

Bei angenäherten Ermittlungen können das Lagerspiel, die Elastizität von Fahrzeug und Gleis sowie die Abnutzung von Spurkranz und Schiene vernachlässigt werden (also neuer Zustand von Fahrzeug und Gleis vorausgesetzt).

In Bild 56 und 57 ist das Beispiel einer 1-D-Lokomotive mit vorderem Bisselgestell für Vorwärtsfahrt dargestellt.

a = Achsstand

d, - Deichsellänge des Bisselgestells

- Halbmesser des Gleisbogens

σ₀ = Grundspurspiel im Gleis

e = Spurerweiterung

½σ0 = die Hälfte des Grundspurspieles, von der Gleisachse aus nach auβen aufgetragen

½σ₆+e = ½ Grundspurspiel + Spurerweiterung, von der Gleisachse aus nach innen abgetragen

A, = radialer Seitenausschlag der Laufachse 1

A, = Seitenspiel der letzten Kuppelachse 5

α = Anlaufwinkel (in verzerrtem Maßstab dargestellt)

Der Gleisbogen wird nach Roy als Kreisbogen dargestellt. Die Längenmaße des Fahrzeuges (z. B. Achsstände) werden parallel, die Breitenmaße des Fahrzeuges (z. B. Seitenverschiebungen von Achsen) senkrecht zur Längsachse des Fahrzeuges gemessen. Die Breitenmaße des Gleises (z. B. Spurerweiterung) werden radial zum Mittelpunkt des Gleisbogens abgegriffen.

Maßstab für die Kurveneinstellung nach Roy Zahlentafel 11

Breltenmaßstab 1:b =	1:1	1:2	1:4
$ \text{L\"{a}ngenma} \\ \text{Bstab f\"{u}r} \ \begin{cases} n = 5 & \dots & 1 \text{: bn} = \\ n = 10 & \dots & 1 \text{: bn} = \\ n = 12 & \dots & 1 \text{: bn} = \\ n = 20 & \dots & 1 \text{: bn} = \end{cases} $	1: 5	1:10	1:20
	1:10	1:20	1:40
	1:12	1:24	1:48
	1:20	1:40	1:80
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	1: 25	1: 50	1: 100
	1:100	1:200	1: 400
	1:144	1:288	1: 576
	1:400	1:800	1: 1600

Ist der Breitenmaßstab (in welchem Spurkranzspiel, Spurerweiterung und Seitenausschlag bzw. Seitenverschiebung der Achsen erscheinen) 1:b und der Längenmaßstab (Achsstände!) 1:b n. so muß der Halbmesser R des Gleisbogens aufgetragen werden im Maßstab 1:b · n2.

Das Roysche Verfahren ist für Einzelfahrzeuge von mittlerer Länge in Gleisbögen bis herab zu etwa 180 m genau genug, wenn n≤ 10 gewählt wird. In allen anderen Fällen gibt Roy zu ungünstige (zu große) Seitenausschläge: es empflehlt sich dann, das Verfahren von Vogel anzuwenden, das bei den europäischen Bahnen heute allgemein üblich ist:

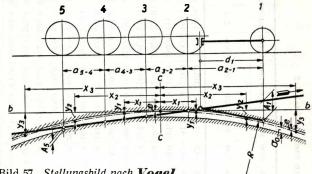


Bild 57. Stellungsbild nach Vogel

Zeichenerklärung siehe S. 84

Der Gleisbogen wird nach Vogel1) von der Scheiteltangente b-b aus mit Hilfe der x- und y-Werte der Zahlentafel 12 (S. 86) festgelegt, Sämtliche Breitenmaße werden senkrecht, sämtliche Längenmaße parallel zur Grundlinie b-b (nicht etwa zur Fahrzeugachse!) gemessen. Der Längenmaßstab ist im Gegensatz zum Royschen Verfahren unabhängig von dem Maßstab, in welchem die Gleiskriimmung dargestellt wird.

Wählt man n = 1:b als Breitenmaßstab, so ergibt sich als Ausdruck für die Ordinaten der Gleisachse

$$y = \frac{l^2}{2000 \text{ R} \cdot \text{b}} \text{ in mm}$$

1 = tatsächlicher Abstand des Punktes der Gleisachse von Radius C-C in mm

und R = Halbmesser des Gleisbogens in m.

Die Abszissen x der Zeichnung ergeben sich, wenn man die wirklichen Abstände l im beliebigen Maßstab abträgt, beispielsweise in 1:40, 1:50 oder 1:100 (vorteilhafte zugehörige Breitenmaßstäbe 1:1 oder 1:2).

¹⁾ Siehe "Organ f. d. Fortschr. d. Eis.-W." 1926 S. 354.

Zeichnerische Darstellung des Stellungsbildes nach **Vogel**

einen Breitenmaßstab 1:2

1:40 und

Beispiel für einen Längenmaßstab

400	1 00			_	٠,	0	0	0	0	0	0	0	0	0
	213,0	256,0	320,0	336,0	358,0	400,0	427,0	458,0	532,0	640,0	716,0	916,0	1064,0	1280,0
375	187,5	225,0	281,3	295,0	312,0	352,0	375,0	401,0	470,0	562,0	622,0	802,0	940,0	1125,0
350	163,2	196,0	245,0	257,0	275,0	0,906	326,5	350,0	408,0	490,0	544,0	0,007	0,618	0,086
3 2 5	140,8	169,0	211,3	222,0	234,0	263,0	281,6	301,0	352,0	455,0	468,0	602,0	0,507	845,0
300	120,0	144,0	180,0	189,0	200,0	225,0	240,0	252,0	300,0	360,0	400,0	512,0	0,000	720,0
275	101,0	121,0		159,0	168,0	0,681	205,0	215,0	252,0	302,0	336,0	432,0	503,0	605,0
250	83,3	100,0	125,0	131,6	139,0	156,0	166,7	178,0	208,4	250,0	278,0	358,0	417,0	0,000
61 61 73	67,5		101,2	106,5	112,5	126,5	135,0	144,0	168,8	202,5	224,0	290,0	337,5	405,0
200	53,3		80,0	84,3	6.88	100,0	106,7	114,0	133,6	160,0	177,6	228,0	266,5	80,0 125,0 180,0 245,0 320,0 405,0
175	40,8	49,0	61,3	64,5	68,1	9.94	7,18	0,78	102,0	122,5	136,0		204,0	245,0
150	30,0	36,0	45,0	47,4	50,0	56,25	0,09	64,2		0,06		129,0		180,0
125	20,8		31,3	32,0	34,7	39,1	41,7	44,6	52,0	62.5	69,4	6,68	104,2	125,0
100	13,3	16,0	20,0	21,1	22.2	25,0	26,7	28,5	33,4	40.0	44,4	0.78	2.99	0,08
22	7,5	0,6	11,25	11,8	12,5	14,05	15,0	16,0	18,76	22,5	25,0	32,0		45,0
50		4,0	5,0		9,6		6.7			0.01	11,1	14,3	16,68	20,0
25	0,83	1,0	1,25	1,32	1,4	1,56	1,7	1,82	2,08	2,5	2,78	3,6	4,17	5,0
Verkürzte Längen $x = \frac{1}{40}$	300	250	002 K	061 Tün	130 180	160	120 Hal	140	071 esse	001 r R	o6 in	20	09	50
	ingen 25 50 75 100 125 150 175 200 225 250 275 300 325 350	Verkörzte Längen x = 40 25 50 75 100 125 150 175 200 225 250 275 300 325 350 300 0,83 3,33 7,5 13,3 20,8 30,0 40.8 53,3 67,5 83,3 101,0 120,0 140,8 163,2	Verkörzte Längen x = $\frac{1}{1}$ 25 50 75 100 125 150 175 200 225 250 275 300 325 350 300 0,83 3,33 7,5 13,3 20,8 30,0 40,8 53,3 67,5 83,3 101,0 120,0 144,0 160,0 25,0 36,0 64,0 81,0 100,0 121,0 144,0 166,0 196,0	Verkörzte längen $x = \frac{1}{40}$ 25 50 75 100 125 150 175 200 225 250 275 300 325 350 300 0,83 3,33 7,5 13,3 20,8 30,0 40,8 53,3 67,5 83,3 101,0 120,0 140,8 163,2 250 1,0 4,0 9,0 16,0 25,0 36,0 40,0 64,0 81,0 100,0 121,0 144,0 169,0 196,0 250 1,25 20,0 31,3 45,0 61,3 80,0 101,2 125,0 151,3 180,0 211,3 245,0	Verkörzte Langen X = $\frac{1}{40}$ 25 50 75 100 125 150 175 200 225 250 275 300 325 350	Varkürzte X = 1 25 50 75 100 125 150 175 200 225 250 275 300 325 350	Verkörzte Längen A 5 100 125 150 175 200 225 250 275 300 325 350 x = 10 1.2 1.0 1.25 1.0	Verkörzte Längen x = 1 25 75 100 125 150 175 200 225 250 275 300 325 350 x = 10 20 13.3 20.8 30.0 40.8 53.3 67.5 83.3 101.0 120.0 140.8 53.3 67.5 83.3 101.0 120.0 140.8 163.2 36.0 40.8 53.3 67.5 83.3 101.0 140.8 163.2 36.0 100.0 120.0 140.8 163.2 160.0 120.0 140.8 163.2 160.0 120.0 140.8 160.0 160.0 160.0 120.0 140.8 160.0 160.0 120.0 140.8 160.0 160.0 120.0 120.0 140.8 160.0 160.0 120.0 160.7 120.0 160.7 120.0 160.7 120.0 160.7 160.0 160.7 160.0 160.7 160.0 160.7 160.0 160.7 160.7 160.0 160.7 160.7 <td>Verkörzte Längen x = 1. 25 75 100 125 150 175 200 225 250 275 300 325 350 x = 1.0 1.2 1.0 1.25 1.0 1.75 200 225 250 275 300 325 350 300 0.83 3.33 7.5 13.3 20.8 30.0 40.8 53.3 67.5 83.3 101.0 140.8 160.0 120.0 140.8 160.0 120.0 140.8 160.0 120.0 140.8 160.0 120.0 140.8 160.0 120.0 140.8 160.0 120.0 140.8 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 113.0 160.0 113.0 160.0 113.0 160.0 113.0 160.0 114.0 172.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.</td> <td> Varkürzte X = 1 25 50 75 100 125 150 175 200 225 250 275 300 325 350 </td> <td> Variatival X = 1</td> <td> Variative X = 1</td> <td> Variative X = 1</td> <td>25 5 75 100 125 150 225 250 275 300 325 350 188 3,33 7,5 13,3 20,8 30,0 40,8 53,3 67,5 83,3 101,0 120,0 140,8 163,2 1,0 4,0 9,0 16,0 25,0 36,0 49,0 64,0 81,0 100,0 121,0 144,0 169,0 196,0 1,25 50,1 11,25 20,0 31,3 45,0 61,3 80,0 101,2 125,0 144,0 169,0 196,0 1,35 50,1 13,2 40,0 61,3 80,0 101,2 150,0 144,0 169,0 196,0 1,43 40,0 61,3 80,0 101,2 151,0 144,0 169,0 196,0 1,44 50,0 61,3 80,0 101,2 125,0 136,0 275,0 136,0 136,0 136,0 136,0 136,0 136,</td>	Verkörzte Längen x = 1. 25 75 100 125 150 175 200 225 250 275 300 325 350 x = 1.0 1.2 1.0 1.25 1.0 1.75 200 225 250 275 300 325 350 300 0.83 3.33 7.5 13.3 20.8 30.0 40.8 53.3 67.5 83.3 101.0 140.8 160.0 120.0 140.8 160.0 120.0 140.8 160.0 120.0 140.8 160.0 120.0 140.8 160.0 120.0 140.8 160.0 120.0 140.8 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 113.0 160.0 113.0 160.0 113.0 160.0 113.0 160.0 114.0 172.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.	Varkürzte X = 1 25 50 75 100 125 150 175 200 225 250 275 300 325 350	Variatival X = 1	Variative X = 1	Variative X = 1	25 5 75 100 125 150 225 250 275 300 325 350 188 3,33 7,5 13,3 20,8 30,0 40,8 53,3 67,5 83,3 101,0 120,0 140,8 163,2 1,0 4,0 9,0 16,0 25,0 36,0 49,0 64,0 81,0 100,0 121,0 144,0 169,0 196,0 1,25 50,1 11,25 20,0 31,3 45,0 61,3 80,0 101,2 125,0 144,0 169,0 196,0 1,35 50,1 13,2 40,0 61,3 80,0 101,2 150,0 144,0 169,0 196,0 1,43 40,0 61,3 80,0 101,2 151,0 144,0 169,0 196,0 1,44 50,0 61,3 80,0 101,2 125,0 136,0 275,0 136,0 136,0 136,0 136,0 136,0 136,

Rahmen und Abfederung

Der Rahmen (gleichgültig, ob Platten- oder Barrenrahmen) ist auf Festigkeit nachzuprüfen hinsichtlich

a) der Beanspruchung beim Anheben der Lokomotive an beiden Rahmenenden, die (bei Berücksichtigung des mildernden Einflusses der Kesselpendelbleche) 1000 kg/cm² möglichst nicht überschreiten soll (siehe Lüttgerding in "Lokomotive", 1942, S. 44 und 61).

b) der Beanspruchungen durch die Kolbenkräfte nach Leitzmann - v. Borries (Theoretisches Lehrbuch des Lokomotivbaues, 1911, S. 667) oder Meineke (ZVDI 1924, S. 276. — Lehrbuch 1931, S. 148. — Lehrbuch Meineke-Röhrs,

1949, S. 141).

Außenrahmen sind teurer als Innenrahmen, ermöglichen aber bessere Zugänglichkeit für Tragfedern und Achslager.

Geschweißte Rahmen ermöglichen gegenüber den üblichen Platten- oder Barrenrahmen eine nennenswerte Gewichtsersparnis (etwa 8—10%). Bei der Baureihe 23 der Deutschen Bundesbahn (Bild 290 und 310) beträgt diese Ersparnis etwa 1,8 t.

Støhlaußrehmen, bei denen die Rahmenwangen mit den Rahmenverbindungen, den Achslagerführungen, den Pufferträgern usw. in einem Stück gegossen sind, zeichnen sich durch verhältnismäßig geringes Baugewicht und durch sehr hohe Widerstandsfähigkeit aus. Nachteilig sind die hohen Modell- und Formerkosten, die den Stahlgußrahmen nur bei hohen Stückzahlen lohnend erscheinen lassen. Schwierig die Wiederinstandsetzung durch Unfall verformter Rahmen. Größere Rahmen dieser Art bisher nur in USA ausgeführt. — Bei Dampflokomotiven pflegt man auch den Rauchkammerträger und die Dampfzylinder in das Gußstück einzubeziehen.

Die Abfederung

dämpft die durch Unebenheiten der Fahrbahn entstehenden Stöße. Sie gleicht außerdem Abweichungen der Auflagerpunkte der Räder von der SO aus, so daß die Drücke auf die Schienen annähernd unverändert bleiben. Beim Stoß muß eine Arbeit aufgenommen werden. Je länger der Aufnahmeweg, desto kleiner die Stoßkräfte. Müßten die Stöße nur von der Elastizität des Werkstoffes der tragenden Bauteile aufgenommen werden, so bedeutete dies kurze Wege und hohe Kräfte.

Durch Einschalten von stark nachgiebigen Federn ergeben sich lange Wege und geringe Kräfte auf das Fahrzeug.

Die nicht abgefederten "toten Lasten" (Radsätze, Achslager, zum Teil auch Lenkgestell- oder Drehgestell-Rahmen) werden deshalb so niedrig wie möglich gehalten.

Für die Abfederung werden vorzugsweise geschichtete Blattfedern verwendet, da diese dank ihrer Eigenreibung die etwa auftretenden Schwingungen zu dämpfen vermögen.

Wird auf besonders weichen Lauf Wert gelegt, so schaltet man der Blattfeder eine Schraubenfeder vor. Die Standsicherheit des Fahrzeuges ist um so größer, je breiter die Federbasis ist und je höher die Stützpunkte liegen. In dleser Hinsicht ist der Außenrahmen dem Innenrahmen gegenüber vorzuziehen, die Anordnung der Tragfedern über den Achslagern (USA-Praxis) günstiger als diejenige unter den Achslagern.

Berechnung der geschichteten Dreieckfeder (Blattfeder)

Mit n = Anzahl der Federblätter

n' = Anzahl der durchgehenden Federblätter

b = Breite eines Federblattes in cm

h = Stärke (Höhe) eines Federblattes in cm

Q = auf den Federbund wirkende "ruhende" Belastung in kg

1 = halbe Länge des oberen Federblattes in cm

= Mitte Bund bis Mitte Hängeeisen

σ_b = Biegungsbeanspruchung in kg/cm² bei ruhender Last

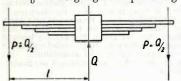


Bild 58. Geschichtete

Dreieckfeder(Blattfeder)

ergibt sich

$$\frac{Q}{2} \cdot l = \frac{1}{6} n b h^2 \sigma_b$$

und

$$n = \frac{3 Q l}{b h^2 \sigma_b}$$

sowie

$$\sigma_{b} = \frac{3 \ Q \ l}{n \cdot b \cdot h^{2}} = \left. \frac{fo \cdot h \cdot E \ (n + \frac{n'}{2})}{l^{2} \cdot n} \right| \ \text{in kg/cm}^{2}$$

Man läßt zu

 $\sigma_b = 4000 \div 4500 \text{ kg/cm}^2$ bei Lokomotiven mit sehr großen Überhängen (z. B. Baulokomotiven)

= 5000 ÷ 5500 kg/cm² bei kurzen Federn = 5500 ÷ 6500 kg/cm² bei langen Federn

 $\sigma_{\rm b_{max}} = 11000$ kg/cm² bei größter Durchfederung.

Die Deutsche Bundesbahn rechnet mit 4500÷5000 kg/cm² bel ruhender Last.

Der gefährliche Querschnitt liegt in Federmitte und sollte nicht durch Keilnuten oder Nietlöcher geschwächt werden.

Die Durchbiegung der Feder ist bei ruhender Last

$$f_0 = \frac{3 \ Q \ l^3}{b \ h^3 \ E \ (n + \frac{n'}{2})} = \frac{l^2 \ \sigma_b \cdot n}{h \ E \ (n + \frac{n'}{2})}$$
 in cm

oder
$$f_0 = Q \cdot c$$
, wenn $c = \frac{3 l^3}{b h^3 E (n + \frac{n'}{2})}$

Man verwendet c als Maß für die Weichheit der Feder und bezeichnet es als Federkonstante.

Es beträgt

die Elastizitätszahl E = 2 100 000 kg/cm²

die übliche Durchbiegung unter ruhender Last $40 \div 50~\text{mm}$ die spezifische Durchfederung (Durchbiegung der Feder) $0.3 \div 0.6~\text{cm/t}$

die übliche unbelastete Pfeilhöhe 45.75 mm

die übliche Pfeilhöhe unter ruhender Last 0÷10 mm

das übliche Achslagerspiel während der Fahrt 20-25 mm

das größte Achslagerspiel (= größtmögliche zusätzliche Federdurchbiegung bei auftretenden Stößen) 30÷45 mm; es ist nachzuprüfen, ob die Feder bei dieser Durchbiegung noch bruchsicher bleibt!

Die von der Feder aufgenommene Arbeit beträgt bei ruhender

Last

$$A_0=f_0$$
 $\frac{Q}{2}=\frac{f_0}{2c}^2$ in emkg

Im Betrieb ist die Feder von vornherein mit Q belastet; es treten noch $Sto\beta kr \ddot{a}fte$ hinzu.

Bild 59. Federdiagramm

Die durch Aufnahme von Stoßarbeit bedingte Änderung der Federspannung Δ Q soll möglichst gering gehalten werden, sonst Gefahr des Federbruches, Entgleisungsgefahr wegen zu starker Entlastung der führenden Achse. Je härter die Feder, um so größer die Spannungsänderung bei gleicher Arbeitsaufnahme, um so kleiner die Änderung der Durchfederung. Es sind daher "weiche" Federn zu bevorzugen.

Gleiche Arbeitsaufnahme durch Stoß ruft an derselben Feder kleine Spannungsänderung bei hoher Belastung, große Spannungsänderung bei geringer Belastung hervor. Bei gleicher Weichheit der Feder fahren die Fahrzeuge somit um so ruhiger, je schwerer sie belastet sind.

Federausgleich

Die Verbindung einzelner Tragfedern durch Ausgleichhebel erhöht die Sicherheit und Ruhe des Laufes, denn der auf eine Achse der Ausgleichgruppe treffende Stoß wird zugleich auf die Tragfedern der übrigen Achsen übertragen; die Achselastungen verändern sich um so weniger, je mehr Achsen in einer Ausgleichgruppe vereinigt sind. Für einen wirksamen Ausgleich eignen sich besonders zweiarmige Hebel mit möglichst geringem Winkelausschlag, nicht so günstig sind Winkelhebel mit Zugstangen. Querliegende Ausgleichhebel begünstigen das Wanken, sind mithin für schnellfahrende Lokomotiven untunlich. Federn, die auf verschiedenen Seiten der Schwerebene der abgefederten Massen liegen, sollen nicht miteinander durch Ausgleichhebel verbunden werden. Dennoch findet man häufig dreiachsige Drehgestelle, bei denen alle Federn einer Seite durch Ausgleichhebel miteinander verbunden sind.

Jede Federausgleichgruppe kann rechnerisch durch eine ideelle Feder ersetzt und damit als ein Stützpunkt angesehen werden. Dieser Stützpunkt gibt die Lage der Resultierenden aus den einzelnen Federbelastungen derselben Gruppe an; er braucht bei zwei benachbarten Federn nicht mit dem Drehpunkt des Ausgleichhebels zusammenzufallen.

Bei Dreipunktstützung ist das Federungssystem statisch bestimmt. Diese Anordnung ist insbesondere bei schlechter Gleislage zu empfehlen und herrscht

traditionsgemäß noch heute in USA vor.

Innerhalb einer Ausgleichgruppe ist die Lage des Stützpunktes durch die Teilungen der Ausgleichhebel eindeutig bedingt; die einzelnen Achsdrücke können jedoch bei mindestens 3 Ausgleichgruppen durch An- bzw. Entspannen der Tragfedern innerhalb enger Grenzen geändert werden; die Größe und Lage der Resultierenden bleibt unverändert. In gleicher Weise läßt sich die Verteilung der Last ohne Verschieben der abgefederten Massen auf die Ausgleichgruppen in ihrer Gesamtheit beeinflussen, falls der Rahmen auf jeder Maschinenseite in mindestens 3 ideellen Stützpunkten, also statisch unbestimmt gelagert ist; die Lage der einzelnen Stützpunkte sowie die Lage und Größe der Gesamt-Resultierenden (Schwerpunkt der abgefederten Massen!) bleiben unverändert; es ändern sich die Achsdrücke und die Resultierenden der einzelnen Ausgleichgruppen.

Die statisch unbestimmte Lagerung des Rahmens ergibt unendlich viele verschiedene Möglichkeiten der Lastverteilung. Bei 3 Stützpunkten führt das zeichnerische Verfahren von Clapeyron zum Ziel; jede beliebige Horizontale des Schaubildes ergibt je 3 Stützpunktdrücke, die zusammen den Gleich-

gewichtsbedingungen genügen (Bild 60).

Über Gummi als Federungselement siehe u. a. Göbel: "Gummifedern", Springer-Verlag 1945.

Bei guter Gleislage kann auf den Federausgleich verzichtet werden (z. B. in England üblich!)

Untersuchung der Einstellung des Lokomotivrahmens auf Ablaufbergen nach Wittrock im "Organ f. d. Fortschritte d. Eisenbahnwesens" 1926, S. 199.

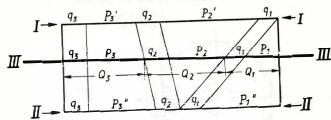


Bild 60. Das Verfahren von Clapeyron

Bezeichnungen: q = Totlast, P = abgefederte Last, Q = P + q = Achsdruck Zustand I Achse 1 völlig entlastet, hierdurch P_2 und P_3 statisch bestimmt. Zustand II: Achse 2 entlastet, hierdurch P_1 und P_3 statisch bestimmt.

Le Der Thergang von Zustand I auf Zustand II erfolgt geradlinig und ergibt unendlich viele mögliche Zustände III, wobei unter P auch mehrere Achsen zu einer Gruppe zusammengefaßt sem können.

Die Bremse

wird vorwiegend als Klotzbremse ausgebildet.

Vielfach wird diese — neuerdings insbesondere bei amerikanischen Dieselektrischen Vollbahnlokomotiven — durch eine Triebwerk-Bremse ergänzt.

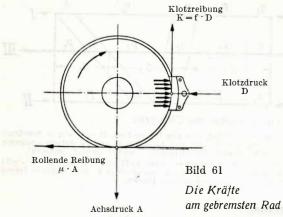
Die Wirkung der Klotzbremse beruht auf der Umsetzung der lebendigen Kraft des rollenden Zuges in Reibungsund Zerspanungsarbeit.

Beim rollenden Rad ist die Reibung zwischen Rad und Schiene wesentlich wirksamer als beim gleitenden; deshalb ist der Bremsdruck so zu wählen, daß die Rollgrenze nahezu erreicht, aber nicht überschritten wird.

Die bremsende Klotzreibung beträgt $\mathbf{K} = \mathbf{f} \cdot \mathbf{D}$

wenn D = Bremsdruck (Klotzdruck der gebremsten Achsen insgesamt)

f = Reibungszahl (Reibwert) Rad/Bremsklotz


st ferner $\mu=$ Reibungszahl Rad/Schiene $G_B=$ Bremsgewicht (entspr. der Summe der von den gebremsten

Achsen auf die Schienen wirkenden Achsdrücke)

Wz = Laufwiderstand des Zuges

so muß sein
$$K_{\max} \leq \mu G_B$$
 und $D_{\max} \leq \frac{\mu G_B}{f}$

wenn ein Gleiten der Räder vermieden werden soll.

Bei eben noch rollendem Rad ist der erzielte Bremswiderstand $W_b = W_z + K_{max}$,

Für die Reibung zwischen Rad und Schiene kann die Relbungszahl μ in den Grenzen der Haftreibung nach Bild 23 ausgenutzt werden. Bei üblichen Betriebsbremsungen im Bereich mittlerer Fahrgeschwiudigkeiten pflegt man mit einem gleichbleibenden $\mu=\frac{1}{2}$ 0.15 zu rechnen.

Der Klotz-Reibungswert f verringert sich gemäß Bild 62 mit wachsender Fahrgeschwindigkeit. Er muß daher der Geschwindigkeit angepaßt werden, wenn die Rollgrenze nicht überschritten werden soll.

Erfahrungsgemäß wird ein Gleiten der Räder bei mittleren und niedrigen Fahrgeschwindigkeiten vermieden,

wenn
$$D_{\max} \leq G_B$$
 und $K_{\max} \leq f \cdot G_B$.

Der größte Bremsdruck wird infolgedessen
bei schnellfahrenden Lokomotiven
bel langsam fahrenden Lokomotiven
bis zu etwa 230 %
des mittleren Dienstgewichtes festgelegt.

Der spezifische Klotzdruck sollte 20÷22 kg/cm² nicht überschreiten.

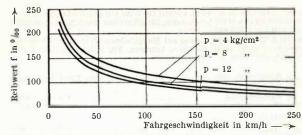


Bild 62. Reibwert zwischen Rad und Bremsklotz. — Voraussichtlicher Verlauf bei hohen Geschwindigkeiten

(nach Kother in "Elektr. Bahnen" 1941, Ergänzungsheft Seite 98). p = Anpreßdruck des Bremsklotzes

Bel Reibungsbremsen mit Kunstbelag kann mit einem gleichbleibenden Reibungswert Kunstbelag/Rad von etwa 0.35 gerechnet werden.

Der Bremsweg~L ermittelt sich aus der Arbeitsgleichung für die Vernichtung der lebendigen Kraft des Zuges.

Soll der Zug aus einer Geschwindigkeit V_2 km/h auf V_1 abgebremst werden, so ist

$$\mathrm{K'} \cdot \mathrm{L} = \mathrm{f'D} \cdot \mathrm{L} = \frac{1000 \, \mathrm{Gz}}{\mathrm{g}} \cdot \frac{(\mathrm{v_2}^2 - \mathrm{v_1}^2)}{2} - (\mathrm{G_Z} \cdot \mathrm{w_m} \pm \mathrm{s} \, \mathrm{Gz}) \mathrm{L}$$

mithin der Bremsweg
$$\mathbf{L} = rac{rac{1000~G_Z}{2~g} \left(v_2{}^2 - v_1{}^2
ight)}{f'D + G_Z\left(w_{m} \pm s
ight)}$$
 in m

Die in obigen Formeln unbericksichtigt gebliebene lebendige Kraft (kinetische Energie) der *umlaufenden* Massen kann durch ein um etwa 5 % erhöhtes V in Rechnung gestellt werden.

Zun rechnerischen BremswegL kommt für Züge mit durchgehender Bremse ein *Verzugszuschlag* von etwa 3 Sekunden, für Züge ohne durchgehende Bremse ein solcher von 5÷8 Sekunden hinzu.

Nach BO § 55 soll der Bremsweg auf Hauptbahnen nicht mehr als 700 m. auf Nebenbahnen nicht mehr als 400 m betragen. Für Fahrgeschwindigkeiten über 110 km/h sind 1000 m vorgesehen.

Für die $\mathit{Handbremse}$ gilt: Die vom Bremser ausgeübte Kraft kann nach TV \S 60 (3)

bei der Spindelbremse bis zu 50 kg bei der Wurshebelbremse (einschl. Gewicht) ebenfalls . . bis zu 50 kg eingesetzt werden.

Bei der Hebelbremse darf das Übersetzungsverhältnis 1:40 nicht überschreiten. Hierbei waagerechte Projektion des kleinen Hebels mindestens 10 mm.

Der Bremsklotzdruck der Handbremse muß mindestens 40 % des auf die gebremsten Achsen entfallenden Anteils des Dienstgewichtes betragen, bei Tenderlokomotiven mindestens 20 % des Dienstgewichtes bei vollen Vorräten.

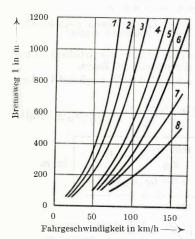


Bild 63. Bremswege in der Ebene durch Versuche ermittelt

Aus "Knorr-Eisenbahn-Kalender" 1952

- 1 Güterzug
- mit 30 Bremshundertsteln 2 Güterzug
- mit 50 Bremshundertsteln 3 Güterzug
- mit 75 Bremshundertsteln
- 4 Personenzug

- 5 Schnellzug mit Kksbr
- 6 " " Hikssbr
- 7 Schnelltriebwagen mit Trommel- und Schienenbremse
- 8 Schnelltriebwagen mit Hikssbr und Schienenbremse

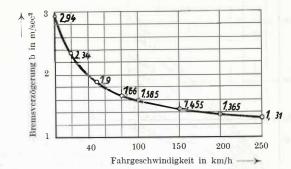


Bild 64. Größtmögliche Bremsverzögerungen auf Grund der Haftreibungswerte von Kother (nach Bild 23)

Die **Bremsverzögerung** kann bis zur Reibungsgrenze zwischen Rad und Schiene getrieben werden.

Bezeichnet μ den Reibungswert Rad/Schiene, so ist die höchste

ausnutzbare Verzögerung | $b_{max} = 9.81 \cdot \mu$ | in m/sec²

Darüber hinausgehende Verzögerungen erfordern besondere Maßnahmen (Schienenbremse, Gummibereifung).

Verzögerungen über 1,5 m/sec² lassen Unannehmlichkeiten für die Fahrgäste erwarten (zum Vergleich: Bis etwa 3,0 m/sec² bei üblichen Bremsungen von Kraftfahrzeugen). Vereinzelt werden höhere Verzögerungen ausgenutzt, beispielsweise

1.77 m/sec2 (Straßenbahn Glasgow)

bis 2.22 m/sec2 (Brooklyn-Manhattan Transit Company)

3 m/sec² (PCC-Straßenbahnwagen)

m/sec2 (Notbremsung Straßenbahn Stockholm).

Mit dem elektrischen Micheline-Triebwagen wurden bis zu 4 m/sec² erreicht. Aus 140 km/h wurde der Wagen auf 140 m in 9,6 sec zum Halten gebracht.

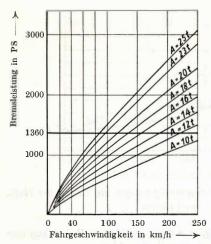


Bild 65

Bremsleistungen

die zum Erzielen der Bremsverzögerungen nach Bild 64 erforderlich sind.

$$A = Achsdruck (= 2 Q)$$

Die Bremsleistung je gebremster Achse

ergibt sich zu
$$N_B = \frac{1000 \text{ A}}{g} \cdot \frac{b \text{ V}}{75} = 1{,}363 \text{ A} \cdot b \cdot \text{V}}$$
 in PS

wenn A = Achsdruck in t

b = Bremsverzögerung in m/sec²

v = Fahrgeschwindigkeit in m/sec

Bei gleichbleibender Verzögerung wächst die erforderliche Bremsleistung mit dem Achsdruck und der Fahrgeschwindigkeit.

Die höchste erzielbare Bremsleistung $N_{B\,max}$ ist durch die zulässige Erwärmung von Bremsklotz und Radreifen bedingt. Übermäßige Erwärmung kann zum Brechen des Bremsklotzes, auch zum Aufschweißen von Klotzmaterial auf den Radreifen führen.

Zu den Lokomotiven mit höchster Bremsleistung, die sich im Betrieb bewährten, zählt die E 19 der Deutschen Bundesbahn: Bremsleistung je Achse mit vier Bremsklötzen etwa 1360 PS. Diese 1360 PS mögen als Grenzleistung für die Klotzbremse angesehen werden (s. Bild 65).

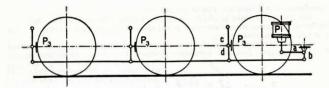


Bild 66. Beispiel einer einseitigen Bremsung

 $D = gesamter \ Klotzdruck \qquad P_{\mbox{{\bf Z}}\mbox{{\bf Y}}\mbox{{\bf I}}} = Kolbenkraft \ im \ Bremszylinder$

$$P_3 = P_1 = P_2 \qquad D = P_{zyl} \cdot \frac{a}{b} \cdot \frac{c+d}{c}$$

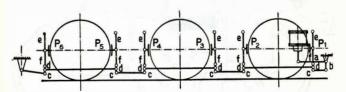


Bild 67. Beispiel einer doppelseitigen Bremsung

$$D = 6 \times P_{zyl} \cdot \frac{a}{b} \cdot \frac{c}{d} \cdot \frac{e+f}{e}$$

Die durchgehenden Bremsen ermöglichen ein Bremsen des ganzen Zuges von einem Punkte aus und werden vorzugsweise mit Luft betrieben, die in einem Spannungszustand zum äußeren Luftdruck steht. Sie müssen im Falle einer unbeabsichtigten Zugtrennung selbsttätig in Wirksamkeit treten; der Spannungszustand zwischen Bremsleitung und Außenluft muß also nicht während des Bremsens, sondern bei gelöster Bremse vorhandensein.

Dieser Forderung können bei Verwendung von *Druckluft* nur *indirekt* wirkende Bremsen genügen, bei denen die Luftpumpe nicht unmittelbar auf die Bremszylinder, sondern auf den als Speicher gedachten Luftbehälter arbeiten muß, von dem aus dann durch geeignete Steuerventile die Bremskolben beeinflußt werden.

Das Bremsgestänge der Klotzbremse ist zumeist mit Ausgleichhebeln versehen, so daß gleiche Klotzdrücke gewährleistet sind.

Anordnung der Druckluftbremse auf S. 396.

Die Saugluftbremse zeichnet sich durch größte Einfachheit aus, hat aber infolge des geringen Bremsdruckes von nur etwa 0.5 kg/cm² den Nachteil großer und schwerer Bremszylinder.

Verbreitung: Nebenbahnen in Deutschland, Frankreich, Österreich, der Tschechoslowakei; fast alle Schmalspurbahnen Bulgariens, Jugoslawiens, der

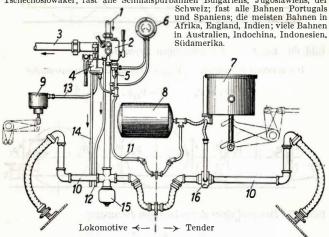


Bild 68. Vereinigte Saugluft- und Dampfbrems-Einrichtung

Die englisch beeinflußten Bahnen pflegen die Saugluftbremse nur für Tender und Wagenzug vorzusehen. Die Lokomotive erhält Dampfbremse, die gleichzeitig mit der Saugluftbremse mittels eines gemeinsamen Führerbremsventils (Brems-Ejector) in Tätigkeit gesetzt, aber auch unabhängig von ihr betätigt werden kann.

- 1 Dampfleitung
- 2 Luftsauger (Ejektor)
- 3 Abdampfleitung
- 4 Dampf bremsventil
- 5 Löseventil zur Saugluftbremse
- 6 Vakuummeter
- 7 Vakuum-Bremszylinder
- 8 Vakuum-Behälter

- 9 Dampf bremszylinder
- 10 Hauptluftleitung 11 Behålterleitung
- 12 Entwässerung zum Luftsauger
- 13 Dampf bremsleitung
- 14 Abdampfltg, zur Dampfbremse
- 15 Tropfbecher
- 16 Abzweigstück (Syphon)

Trlebwerkbremsen verringern den Verschleiß an Bremsklötzen. Sie haben sich für längere Gefällstrecken eingebürgert, werden aber bei elektrischen und Dieselfahrzeugen neuerdings zuweilen auch für übliche Betriebsbremsungen herangezogen (Gegendruckbremse s. S. 230). Bei hohen Fahrgeschwindigkeiten (tiber etwa 100 km/h) werden auch die Lokomotiv-Laufachsen abgebremst.

Die Kolben-Dampflokomotive

üblicher Bauart besitzt die Vorzüge

einfachster Bauweise

großer Widerstandsfähigkeit und geringer Empfindlichkeit im Betriebe großer Anspruchslosigkeit in der Unterhaltung

niedrigen Beschaffungspreises

hoher Lebensdauer.

Es können unter bestimmten Voraussetzungen fast alle festen, flüssigen und gasförmigen Brennstoffe unter dem Lokomotivkessel verfeuert werden.

Ihre Nachteile sind

das verhältnismäßig hohe Eigengewicht

das hohe Gewicht der mitzuführenden Wasser- und Brennstoff-Vorräte

die nicht ständige Betriebsbereitschaft (erforderliche Anheizzeit etwa 5÷6 Stunden bei kaltem, 1÷2 Stunden bei vorgewärmtem Speise-

die verhältnismäßig hohen Anforderungen an die Güte des Speisewassers und des Brennstoffes

der verhältnismäßig hohe Schmierölverbrauch

die Verungeinigung der Lokomotive und ihrer Umgebung durch Rauch

die vom Personal verlangte körperliche Arbeit

der Verbrauch von Brennstoff auch in der Bereitschaft.

der niedrige wärmetechnische Wirkungsgrad (bei billigen Kohlen allerdings unwesentlich)

die störenden Bewegungen mit ihren nachteiligen Einwirkungen auf Fahrzeug und Gleis

die Beschränkung des Fahrtbereiches durch Verschlacken des Rostes (bei Steinkohlenfeuerung nach Verfeuerung von jeweils etwa 1--2 t Kohle je m2 Rost)

die Notwendigkeit von Kohlen- und Wasserstationen sowie Entaschungsanlagen in verhältnismäßig dichten Abständen.

Man unterscheidet

Nafdampf-Lokomotiven, bei denen der im Kessel entwickelte Dampf unmittelbar den Zylindern zugeführt wird

Heißdampf-Lokomotiven, bei denen der Dampf auf seinem Wege zu den Zylindern durch einen Überhitzer geleitet wird und dort durch zusätzliche Wärmeaufnahme einen gasähnlichen Zustand annimmt

Tender-Lokomotiven (tank engines), die ihre Wasser- und Brennstoff-Vorräte selbst mit sich führen.

Schlepptender-Lokomotiven (tender engines), bei denen die Wasserund Brennstoff-Vorräte auf einem besonderen Fahrzeug (Tender) mitgeführt werden

Halbtender-Lokomotiven = Tenderlokomotiven mit zusätzl. Hilfstender

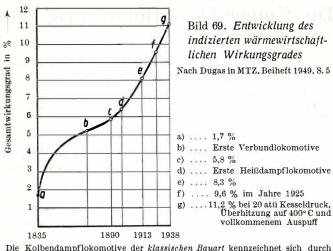


Bild 69. Entwicklung des indizierten wärmewirtschaftlichen Wirkungsgrades

Nach Dugas in MTZ, Beiheft 1949, S. 5

g)11,2 % bei 20 atü Kesseldruck, Überhitzung auf 400° C und vollkommenem Auspuff

unmittelbaren Antrieb (kein Übersetzungsgetriebe zwischen Dampfzylinder und Treibachse)

Heizrohrkessel

Feuerbüchse mit Verankerung durch Stehbolzen

selbsttätige, der jeweiligen Leistung entsprechende Feueranfachung durch Blasrohr.

In ihren Grundzügen ist sie seit Stephenson's "Rocket" vom Jahre 1829 unverändert geblieben.

Der technische Fortschritt kommt zum Ausdruck

in der Erhöhung von Leistung, Zugkraft und Geschwindigkeit

in der Senkung des spezifischen Lokomotivgewichtes

in der Güte und der besseren Ausnutzung der Werkstoffe

in der Verbesserung der Laufeigenschaften

in der Verbesserung der Herstellungsverfahren

in der Steigerung des Wirkungsgrades (obiges Bild) und damit der Wirtschaftlichkeit.

Die Ermittlung der Hauptabmessungen von neu zu entwerfenden Lokomotivbauarten stiitzt sich auf Erkenntnisse aus wissenschaftlichen Versuchsund praktischen Erfahrungswerten, denen naturgemäß entsprechende Toleranzen anhaften. Den Erkenntnisschatz ständig zu vermehren und damit die Spielräume möglichst klein zu halten, ist das Ziel der technischen Forschung und des Versuchswesens.

Man kann mit günstigsten Näherungswerten arbeiten, wenn sich der Neuentwurf eng an eine vorhandene, erprobte Lokomotivgattung anlehnt.

Zur Ermittlung der Hauptabmessungen

Die Strahlsche Kurve

gibt eine für den Entwurf von Kolbendampflokomotiven üblicher Bauart genügend genaue Annäherung an die Wirklichkeit. Sie stellt die indizierte Leistung Ni (in PS) in Abhängigkeit von der Fahrgeschwindigkeit V (in km/h) bei annähernd gleichbleibender Heizflächenbelastung dar. Die höchste Dauerleistung Ni' wird bei einer "günstigsten" Geschwindigkeit V' erzielt, der eine "günstigste" Zugkraft Zi' zugeordnet ist.

Die Leistungskurve verläuft

$$\mbox{für} \ \ \frac{V}{V'} < 1 \ \ \mbox{als Parabel.} \ \ \, . \ \ \, . \ \ \, . \ \ \, . \ \ \, . \ \ \, . \ \ \, \frac{N_1}{N_1'} = \ \ 0.6 \left(2 - \frac{V}{V'}\right) \cdot \frac{V}{V'} + 0.4 \label{eq:first-poisson}$$

Die Zugkraftkurve verläuft

für
$$\frac{V}{V'} <$$
 1 nach dem Ausdruck . . $\frac{Z_1}{Z_1'} = 0.6 \left(2 - \frac{V}{V'}\right) \, + 0.4 \, \frac{V'}{V}$

für
$$\frac{V}{V'}>1$$
 nach dem Ausdruck . . $\frac{Z_i}{Z_{i'}}=\frac{1}{2}\left(3-\frac{V}{V'}\right)\cdot\sqrt{\frac{V'}{V}}$

Strahlsche Kurve

Zahlentafel 13

$\frac{\mathbf{v}}{\mathbf{v}'} =$	0,25	0,3	0.4	0,5	0,6	0.7	0,8	0.9	1,0	1,1	1.2	1,3	1,4	1,5
$\frac{N_i}{N_i} =$	0,66	0,7	0.78	0,85	0,91	0,95	0,98	0.99	1,0	0,999	0,985	0,969	0,948	0,919
$\frac{Z_{i}}{Z_{i'}} =$	2,65	2,35	1,96	1,70	1,51	1,35	1,22	1,11	1.0	0,91	0.825	0.746	0.675	0,612

Die Strahlsche Kurve bietet für den Entwurf genügend Sicherheits-Spielraum. Ausgeführte, gut unterhaltene Vollbahnlokomotiven zeigen einen geringeren Leistungsabfall, als er nach Strahl zu erwarten ist. Nach Versuchswerten mit Einheitslokomotiven der Deutschen Reichsbahn hat Heise eine "berichtigte Kurve" aufgestellt (umstehendes Bild).

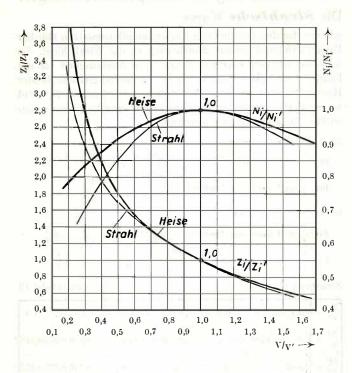


Bild 70. Strahlsche Kurve mit Berichtigung nach Heise

Siehe "Lokomotive" 1942, S. 151

Die Bestimmung der Kesselabmessungen

setzt in erster Linie die Kenntnis der geforderten höchsten Dauerleistung Ni' voraus. Bezeichnet di' in kg/PSi-h den kleinsten stündlichen Dampfverbrauch für die Leistungseinheit — der bei der günstigsten Geschwindigkeit zu erwarten ist - so beträgt die erforderliche stündliche Dampferzeugung des Kessels

$$D_h = 1, 1 \cdot N_i' \cdot d_i'$$
 in kg/h.

Der Faktor 1,1 berücksichtigt hierbei angenähert den Bedarf von zusätzlichen Dampfverbrauchern¹).

Bei Anwendung eines Mischvorwärmers (S. 189) werden etwa 10 % dieser Dampfmenge zurückgewonnen, der Wasserverbrauch beträgt dann nur etwa 90 % der Dam pferzeugung.

Es beträgt der zusätzliche Frischdampfverbrauch

a) für die Speisevorrichtungen zum Speisen von 100 l Wasser:

Frischdampfstrahlpumpe Abdampfstrahlpumpe	etwa etwa	11 kg 1,5-:-3,5 kg bei 12 atii, steigt mit wachsendem Kesseldruck rasch an	kein ther- mischer Verlust!
--	--------------	---	-----------------------------------

eine Fördermenge 2,5 kg Kolbenspeisepum pe von 250 l/min vor-Verbund-Kolbenspeisepumpe etwa 1,8÷2,0 kg ausgesetzt Henschel-Turbo-Speisepumpe siehe S. 191

Fahrpum pe 0,42 kg

b) für die Dampfheizungc) für die Luftsaugebremse etwa 55 - 80 kg/h je D-Zugwagen

etwa 100-260 kg/h

d) für die Luftdruckbremse

allgemein etwa 50---100 kg/h

zweistufige Luftpumpe mit einer Förderleistung von 2000 l/min entspannter (angesaugter) Luft 10,8 kg je 100 Doppelhiibe etwa oder etwa 5,4 kg je 1000 l geförderter entspannter Luft

Doppelverbund-Luftpumpe gleicher Leistung 3.6 kg je 1000 l geförderter etwa entspannter Luft

e) für den Booster siehe S. 229 f) für den Stoker siehe S. 188

g) für die elektrische Beleuchtung durch Turbodynamo siehe S. 231

Bei Verwendung von Heißdamnf mit 250-:-300°C in geeigneten Fällen Ersparnisse bis etwa 40 % gegenüber obigen Angaben (bis etwa 55 % bei 400°C). Der günstigste spezifische Dampfverbrauch di' kann nebenstehendem Schaubild 71 entnommen werden.

Der spezifische Dampfverbrauch ergibt sich nach Achterberg1) für Heißdampf-Zwilling-Lokomotiven zu

$$d_i' = (a - \frac{t_{(i)}}{b}) \cdot (e - \frac{d}{f})$$
 in kg/PS_ih.

Hlerbei ist d = Zylinderdurchmesser in cm $t_{ii} = Hei\beta dampftemperatur$ in $^{\circ}C$

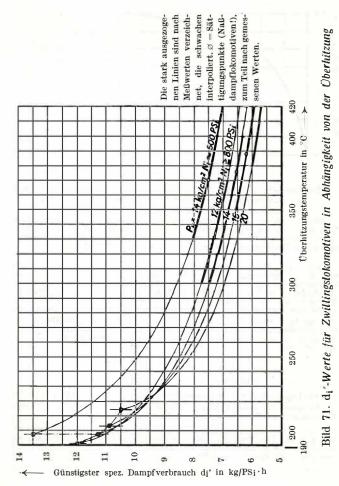
a, b, e und f sind Konstanten, für die bei einer Kesselanstrengung A = 3,6 (siehe Seite 107) nach Meineke²) mit geringer Abwandlung der ursprünglichen Werte zu setzen ist:

Für Naßdampf-Zwilling-Lokomotiven kann gesetzt werden

$$d_{i'} = 13.4 - \frac{d}{31.5}$$
 in kg/PSi-h.

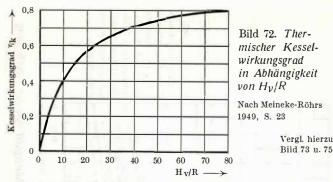
Die feuerberührte Verdampfungsheizfläche

ergibt sich zu


$$H_{V} = \frac{D_{h}}{b}$$
 in m^{2}

wenn b = mittlere Heizflächenbelastung in kg/m²-h ist (d. h. die stiindlich auf 1 m² feuerberührte wasserverdampfende Heizfläche im Durchschnitt erzeugte Dampfmenge in kg).

Die wasserberührte Verdampfungsheizfläche beträgt etwa (1.08 \div 1.1) · Hv.


Mit der wasserberührten (nicht der feuerberührten) Heizfläche rechnet man im englischen wie auch im amerikanischen Lokomotivwesen. Ebenso gibt man im deutschen Lokomotivbau den Gepflogenheiten der Abnehmerkreise entsprechend die wasserberührte Heizstäche für die gängigen Typen von Bau-, Werk-, Industrie- und Feldbahnlokomotiven an (vergl. Seite 176/177).

Die Wertigkeit der Heizfläche nimmt mit der Entfernung vom Rost aus sehr stark ab. Die erzielbare Verdampfung hängt fast ausschließlich von der Größe der Rostfläche und der Ausbildung der Feuerbüchse ab. Allein 35-40 % der erzeugten Dampfmenge werden von der Feuerbüchsheizfläche erzeugt. Auch eine geringfügige Vergrößerung der Feuerbüchsheizfläche — beispielsweise durch Wasserkammern - erhöht die mittlere rechnerische Heizflächenbelastung verhältnismäßig stark. Eine Vergrößerung der Heizfläche über das etwa 50 fache der Rostfläche ist von nur geringem Einfluß auf die Dampferzeugung.

¹⁾ Siehe Organ f. d. Fortschritte d. Eisenbahnwesens 1931, S. 482.

²⁾ Siehe Organ f. d. Fortschritte d. Eisenbahnwesens 1940. S. 210 und 365 — Bundesbahn 1950, S. 87 — Meineke-Röhrs 1949, S. 70.

Amerikanlsche Versuche (vergl. S. 156) ergaben eine mittlere Belastung der wasserberührten Feuerbüchsheizfläche von 267 kg/m²-h der wasserberührten Rohrheizfläche von 48,6 kg/m²-h

Das Abnehmen der Wertigkeit der Heizfläche mit der Entfernung vom Rost kommt in der Wirkungsgradkurve über dem Verhältnis H_V R zum Ausdruck. Übermäßig hohes H_V /R erfordert höheres Baugewicht, dem eine entsprechende Erhöhung des Wirkungsgrades nicht gegenübersteht.

Die mittlere Heizflächenbelastung b ist als ein für die Festlegung des Kessels wichtiger Rechnungswert aufzufassen. b ist unter sonst gleichen Voraussetzungen naturgemäß um so größer, je höher der Anteil der Feuerbüchsheizfläche (direkten Heizfläche) an der Verdampfungsheizfläche ist. O bere Grenze gegeben durch die Rücksicht auf die Schonung der Feuerbüchsrohrwand, für die erfahrungsgemäß eine Rauchgastemperatur bis etwa 1240° C zuträglich ist (Seite 116). Man macht b zweckmäßigerweise abhängig vom Verhältnis Rohrheizfläche: Feuerbüchsheizfläche = H_r/H_D und kann für Großlokomotiven mit einer Rostgröße $R \ge 2$ m² und bei Vorwärmung des Speisewassers auf rd. 95° C zulassen etwa:

$$\begin{array}{lll} b &=& 50 \cdot \div .54 \ \ kg/m^2 \cdot h \ \ f\ddot{u}r \ H_{I}/H_{\dot{b}} \ge 11 \\ &=& 57 \div .60 \ \ kg/m^2 \cdot h \\ &\approx& 65 \cdot \div .80 \ \ kg/m^2 \cdot h \\ &=& 9 \div 7 \end{array}$$

Für Lokomotiven ohne Speisewasservorwärmer ist mit etwa 0,9 b zu rechnen. Bei diesen Belastungen bleiben die Erhaltungskosten der Kessel in tragbaren Grenzen, und das Kesselbaugewicht wird hinlänglich ausgenutzt.

Höhere Werte lassen sich auch im Dauerbetrieb erzielen (bis um 100 kg/m²-h), falls Rost und Feuerbüchse für das Verfeuern entsprechender Brennstoffmengen ausreichen. Sie gehen allerdings auf Kosten des Kesselwirkungsgrades und verstärken die Reparaturanfälligkeit.

Für kleinere Lokomotiven (R < 2 m²) entnehme man b der Zahlentefal 14.

Bei kleineren $Na\beta dampf$ lokomotiven rechnet man je nach der Drehzahl (60 \div 240/min) mit 2.4 \div 4.0 PSj je m² wasserberührter Verdampfungsheizfläche.

Die nach obigen Darlegungen mögliche Heizflüchenbelastung b setzt mindestens eine Treibrad-Umdrehung in der Sekunde voraus.

Für die Bemessung der Feuerbüchshelzsläche (direkte Heizfläche, Strahlungsheizfläche) H_b empfehlen C. Th. Müller und Klie¹) eine spezifische Wärmebelastung der Feuerbüchsheizfläche zu

$$\frac{B_{11} \cdot H_{11}}{H_{b}} \leq 0.6 \cdot 10^{6} \text{ kcal/m}^{2} \cdot h$$

mit Bh = verfeuerte Brennstoffmenge in kg/h

Hu = unterer Heizwert des Brennstoffes in kcal/kg

ait
$$\| \mathbf{11_b} \ge \frac{1.67}{10^6} \, \mathbf{B_h} \cdot \mathbf{H_u} = \frac{\mathbf{B_h} \cdot \mathbf{H_u}}{600000} \| \text{in } \mathbf{m^2} \|$$

Diese Regel gewährleistet größtmögliche Schonung des Kessels (Temperatur der Feuerbüchsrohrwand nicht über etwa 1240° C, keine Gefahr des Rohrlaufens, keine unzulässigen Biegungsbeanspruchungen der Stehbolzen). Sie trifft auf die vor 1950 entwickelten deutschen Einheitslokomotiven nicht zu (abgesehen von der Baureihe 50 bzw. 52). Diese werden daher im Betrieb stürker belastet, als es wünschenswert erscheint. 2)

Für $H_r/H_b = 9 \div 7$ sei die Feuerbüchsheizfläche möglichst $H_b \backsim 6$ R. Voneiner gewissen Grenze an — etwa für $H_r/H_b \lt 9$ — läßt sich das empfohlene H_b nur durch besondere bauliche Maßnahmen verwirklichen:

- durch lange, schmale und möglichst tiefreichende Feuerbüchse, wie sie seinerzeit von Garbe verfochten wurde. Die Grenze dieser Bauart liegt bei etwa 3,5 m Rostlänge (längere Roste lassen sich von Hand kaum beschicken!), entsprechend etwa R = 3,5 m² bei Regelspurlokomotiven.
- durch Einbau einer Verbrennungskammer (Beispiel Bild 328). Vorteile: Große Strahlungsheizliäche, kürzere Heiz- und Rauchrohre. — Nachteile: Erhöhtes Baugewicht, zusätzliche Stehbolzen und Deckenanker.
- durch Einbau von Wasserkammern (Thermosyphons). Besserer Wasserumlauf, aber größere Empfindlichkeit hinsichtlich der Unterhaltung und hinderlich bei Arbeiten in der Feuerbüchse.
- durch Einbau von Wasserumlaufrohren (zumeist nur als Auflager für die Feuerbrücke gedacht)

Der von Strahl eingeführte Begriff Kesselanstrengung (bzw. Rostanstrengung) bedeutet die stündlich auf 1 m² Rostfläche entwickelte Wärmemenge $A = \frac{B_h \cdot H_u}{R \cdot 10^6}$

$$\begin{array}{ll} \text{mit} & B_{h} = \text{verfeuerte Brennstoffmenge in kg/h} \\ & H_{\mu} = \text{unterer Heizwert des Brennstoffes in kcal/kg} \end{array}$$

Vgl. in diesem Zusammenhang Klie in "Glasers Annalen" 1952, S. 47.
 Vgl. Widdecke in "Die Lokomotive" 1941, S. 79.

Für deutsche Steinkohle mit 7000 kcal/kg Heizwert ergibt sich bei einer

Kesselanstrengung A = 2 3 4 5 6 eine Rostbelastung $B_h/R = 286 429 572 714 857 \text{ kg/m}^2-h$

Für Großlokomotiven ($R \ge 2 \text{ m}^2$!) gilt: A = 3 als gute Dauerleistung

4 als größte Dauerleistung

5 als vorübergehende Höchstleistung

 $A=3\div 4$ wird als Berechnungsgrundlage empfohlen, bei kleineren Lokomotiven lehne man sich an die Werte der nachfolgenden Zahlentafel an:

Rost- und Heizflächenbelastungen (Steinkohle von 7000 kcal/kg Heizwert).

Zahlentafel 14

Rostiläthe R m²	$\mathrm{H}_{\mathrm{V}}/\mathrm{R}$	Rostbelastung Bh/R kg/m²-h	Heizflächenbelastung b kg/m²-h
≥ 2,0	etwa 50 ÷ 55	etwa 500	nach S. 106
1,5	4852	450	etwa 52
1.0	4650	380	43
0,6	4547	300	37
0.4	4547 4044	250	33
0,2	26- : 30	200	26

Ein Stoker (siehe S. 188) ermöglicht Rostbelastungen bis etwa 1200kg/m²/-h, allerdings auf Kosten des Kesselwirkungsgrades.

Die Größe der Rostfläche

ist gegeben durch

$$R = \frac{B_h}{B_h/R}$$
 in m^2

Gilt R für westfälische Steinkohle von $H_{\rm U}=7000$ kcal/kg Helzwert, so kann man annehmen eine

Rostfläche R' = 0,9 R für Preßkohle, grobstückige Steinkohle, Koks

= 1,2 R für feinkörnige Steinkohle, böhm. Hartbraunkohle

= 1,25 R für Holz (übl, Mittelwert für gutes Holz). (S. hlerzu ergänzende Bemerkung unten)

= 2.0 R für Anthrazit und Staubkohle

Für Koksfeuerung wurde vielfach ausgeführt $H_V/R' \sim 80 \div 100$

Braunkohle erfordert individuelle Behandlung, H_V/R' schwankt je nach der Elgenart des Brennstoffes in den weiten Grenzen von etwa 25:-60

Bei Holzfeuerung unterschiedliche Verhältnisse je nach der Art des Holzes. Übliche Rostfläche R' = 1,25 R. An sich braucht R gegenüber Kohlefeuerung nicht vergrößert zu werden, da Holz beliebig hoch schichtbar. Man achte aber auf möglichst großes Feuerbüchsvolumen. — Bei R'>R kann der Luftüberschuß zu groß werden. Zuweilen deckt man dann allseitig eine etwa 80 ÷150 mm breite Fläche des Rostes ab und schützt so die Feuerbüchswände vor Kaltluft.

Für gutes Holz (z. B. Birkenholz) gilt: $B_h/R' \le 800~kg/m^2$ -h Holz, höchstens 1000 kg/m²-h (entsprechend etwa 400 kg/m²-h bei Steinkohle)

Gleiche Dampfentwicklung bei 1t Steinkohle wie bei 6-:-7 m³ =2,5 t Birkenholz

Luftüberschuß 3:-4 (bei Steinkohle etwa 1.3:-1.6). Erforderliche Luftmenge für 1 kg Holz etwa 3.86 m³ 1 kg Steinkohle etwa 8.75 m³.

Empfehlenswert: Luftgeschwindigkeit im Rost höchstens 6,5 m/sec

Freie Rostfläche $\sim 0.4~{
m R'}$ Feine Rostspalten, damit gute Luftvertellung (vgl. Seite 112 unten)

Selbsttätige Rostbeschickung muß bei festen Brennstoffen vorgesehen werden wenn der stündliche Brennstoffverbrauch mehr als 2÷2,5 t beträgt (siehe S. 188: Stoker).

Uber Ölfeuerung s. S. 235.

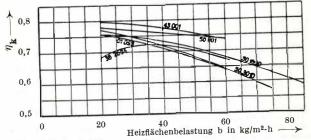


Bild 73. Kesselwirkungsgrade einiger Lokomotiven nach Reichsbahn-Versuchen 1928—1943

Lok 50 001 . . Blasrohrdurchmesser 155 mm 50 3010.. ohne Vorwärmer 50 1890.. ,, 150 mm

Der stündliche Brennstoffbedarf B_h läßt sich bei bekanntem D_h ermitteln aus der Verdampfungsziffer¹) $Z = \frac{D_h}{B_h} = \eta_k \cdot \frac{H_u}{i''-t_w}$

$$zu \quad B_h = \frac{D_h (i'' - t_w)}{\eta_k \cdot H_u} \quad in \ kg/h$$

mit i" = Warmeinhalt des Arbeitsdampfes in kcal (nach Dampftafel!)

t_w = Speisewassertemperatur in °C

 $\tau_{ik} = \text{Kesselwirkungsgrad}$

 ~ 0.66 für b = $60 \text{ kg/m}^2\text{-h}$ bei Speisung durch Strahlpumpe ($t_w = 15^{\circ}\text{C}$)

 ~ 0.70 für b = 60 kg/m²-h bei Speisewasservorwärmg, auf 90°C.

 Die Verdampfungsziffer Z gibt an, wieviel kg Dampf durch Verfeuern von 1 kg Brennstoff erzeugt werden kann.

Richtwerte Z = 3 für Holz
$$Z = 6 \div 9$$
 für Steinkohle = 3 $\div 4$ für Torf = 3.5 $\div 5$ für Braunkohle

Der Brennsteffverbrauch je PSih kann für Steinkohle von etwa 7000 kcal/kg Heizwert bei üblichen Kesseldrücken und günstigster Geschwindigkeit im Mittel angenommen werden

zu 0,8÷1,0 kg für Heißdampf-Verbund 0,9÷1,1 kg für Heißdampf mit einfacher Dampfdehnung 1,2÷1,4 kg für Naßdampf-Verbund 1,4;-1,8 kg für Naßdampf mit einfacher Dampfdehnung.

Der Brennstoffverbrauch je PS_eh beträgt bei mittleren Geschwindigkeiten etwa das 1,25fache der auf PSj bezogenen Werte.

Verbrauch an Steinkohlen für Vollbahnlokomotiven

beim Anheizen etwa 50 kg je m³ Wasser im Kessel

beim Anfahren des Zuges von 0 km/h bis Beharrungsgeschwindigkeit etwa 50 \div 90 kg

bei kleinen Verschiebebewegungen einschl. Zwischenpausen auf Unterwegsbahnhöfen etwa 2,3-;-3,6 kg/min

bei Aufenthalten über 15 min Da uer etwa 25 kg je m² Rostfläche u. Stunde bei Lecrfahrt der Lokomotive etwa 5-;−7 kg/km.

Eine Einheitslokomotive der Deutschen Bundesbahn verbraucht im Mittel 11÷15 kg Steinkolde je Lokomotiv-Kilometer

18-20 kg Stemkohlen je 1000 tkm Zuggewicht einschl. Lokomotive. Kohlenverbrauch für Nebenleistungen (s. Wilh. Müller: Fahrdynamik 1940, S. 64);

Für Heißdampflokomotiven nimmt man die außen gemessene (feuerberührte) **Überhitzerheizfläche** — gerechnet bis zum Eintritt der Überhitzerrohre in die Rauchkammer —

zu
$$\left[H_{\ddot{u}} = \left(\frac{1}{3} \div \frac{1}{2,2} \right) H_{V} \right]$$
 in m^{2} .

Kleinere Überhitzer (bis herunter zu etwa $\frac{1}{5,5}$ Hv) finden sich zuweilen bei Lokomotiven amerikanischen Ursprunges und wirken hierbei mehr als eine Art Dampftrockner; man beschränkt in solchen Fällen die Überhitzerheizfläche zugunsten der Verdampfungsheizfläche, um die Lokomotiven auf gewissen Strecken stärker überlasten zu können.

Bei hoher Dampfüberhitzung kann mit etwa 7 m² Überhitzerheizfläche je t stündlich erzeugten Dampfes gerechnet werden.

		1	Bei	Überhitzung	auf	250	300	400° C
beträgt die Ersparnis	an		20.					45 %
betrage the Elispainis		Kohle			etwa	6	12	21 %
gegenüber Naßdampf	von	gleichen	Dr	uck.				

Mit welcher Überhitzerheizfläche eine bestimmte Temperatur des Arbeitsdampfes erreicht werden kann, läßt sich genau lediglich auf Grund einer ausführlichen Wärmeberechnung ermitteln.

Lokomotiven *ohne* Vorwärmer (etwa 15° C Speisewassertemperatur) erreichen unter sonst gleichen Bedingungen eine um rd. 30° C höhere Überhitzung als solche mit Speisewasser von etwa 95° C, da der Überhitzer bei ihnen eine geringere Dampfmenge zu verarbeiten hat.

Einen Anhalt für die zweckmäßige Überhitzergröße gibt Bild 74.

Die Größe des Überhitzers ist von dem Verhältnis H_Γ/H_D abhängig. Der Überhitzer muß um so größer werden, je größer der Anteil der Feuerbüchsheizfläche an der gesamten Verdampfungsheizfläche ist.

Die Kesselrohre erfüllen die Forderung günstigsten Wärmeüberganges und geringsten Strömungswiderstandes, wenn die

Rohrkennziffer
$$K = \frac{h}{Q} = \frac{4 l}{d}$$
 eingehalten ist, wobei $Q = Rauchgasquerschnitt des Rohres (also abzüglich etwaiger Überhitzerrohr-Querschnitte)$

h = von Gasen bespülte Wandfläche (Heizfläche) des Rohres.

l = Rohrlänge d = innerer Rohrdurchmesser

$$\begin{array}{ll} \text{Es soll } \left\{ \begin{array}{ll} \text{für \textit{Hei}zrohre} & K_1 = 400 \div 450 \\ \text{sein } \left\{ \begin{array}{ll} \text{für \textit{Rauch}rohre} & K_2 = 420 \div 470 \\ \end{array} \right\} \right\} \begin{array}{ll} \text{dann bei Heiz- \textit{und}} \\ \text{Rauchrohren etwa gleiche} \\ \text{Abgastemperaturen} \end{array}$$

Abweichend hiervon ist aus konstruktiven Gründen

 $K_3 \sim 250$ bei Kleinlokomotiven mit l $\leq 2500 \div 3000$ mm Daten zum Bestimmen des zweckmäßigen Rohrdurchmessers auf Zahlen-

Daten zum Bestimmen des zweckmangen kontattimierst auf baten tafel 15, Seite 113. Bei Rauchrohren muß jeder der mit Überhitzerelementen verschieden stark besetzten Abschnitte gesondert behandelt werden. (Rauchrohre = von Überhitzerelementen besetzte Heizrohre.)

Über die Belastung der Kesselrohre amerikanischer Lokomotiven siehe S. 162

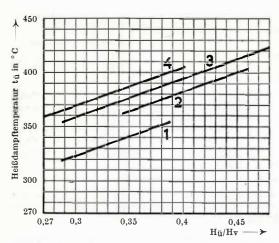


Bild 74. Näherungswerte für die erzielbare Überhitzung

- 1 Große Feuerbüchse ($\rm H_r/H_b \sim 9$), mittlerer Abstand der Überhitzer-Umkehr-Enden von Feuerbüchs-Rohrwand 700 mm, hohe Rauchrohr-Kennziffern, geringe Temperatur der Abgase aus den Rauchrohren
- 2 Feuerbüchse mit $H_r/H_b \sim 10$ ähnlich Fall 1, Umkehrenden-Abstand 350 mm, niedrigere Rauchrohr-Kennziffern als unter 1
- 3 Kleine Feuerbüchse ($H_r/H_b \sim 11,5 \div 13,5$), Umkehrenden-Abstand 500 mm
- 4 Wie 3, jedoch höhere Temperatur der Abgase aus den Rauchrohren

Bei Lokomotiven *ohne* Abdampfvorwärmer ist die Dampftemperatur um $25 \div 30^\circ$ C höher, als im Schaubild angegeben.

Hinweise für die bauliche Durchbildung des Kessels:

Es soll sein

die freie Rostfläche so groß, wie es die Eigenart des Brennstoffs zuläßt:

bei	Steinkohle	$0.25 \div -0.5$	der	Rostfl.,	Rostspalten	10÷13	mm breit
	Braunkohle				Rostspalten		
	Koks	$0.3 - \div - 0.5$	der	Rostfl.,	Rostspalten	10÷13	mm breit
	Torf	$0.14 - \div - 0.2$	der	Rostfl.,	Rostspalten	$10 \div 15$	mm breit
	Holz	$0,14 \div 0,2$	der	Rostfl.,	Rostspalten	6 mm	breit,
				ü	blich jedoch	$8 \div 15$	mm breit

der gesamte von den Aschkastenklappen freigegebene Luftquerschnitt mindestens $^{1}/_{3}$ der Rostfläche

				œ	ohran	ersd	hnitte	y pun	Rohrquerschnitte und Rohrkennzittern	nziffer	u	niai (
Heizh	ohre u.	unbesetzh	Heizrohre u. unbesetzte Rauchrahre		THE STREET	übe	Überhitzer	Trees, and		Rohrkenn	Rohrkennziffer K je Ifd.m	Ifd.m
Pohrh	Rohrhozeich	Heizfläche	505=	Uberhitz	überhitzerrahre im vollbesetzten Tei I		Gasquerschnitt des Rauchrohns	_	Oberhitzerheizfläche außen je Ifd.m	Heizrohr oder unbe-	Rauchrohr	rohr
NIO	nung DIN 32 050	fb m²/1fd.m	querschnitt cm²	Anzahl	Bezeichny	rolibeseld III.	(2 Oberhit: zerrohre) ZER CM2	1 %	halbbesetzt III m²	setztes Rauchrohr I	vollbesetzt I	vollbesetzf halbbesetzt II III
38	x 2,5	0. 1038	8,55							121, 1		
44,5	× 2,5	0, 124	12,25							101,0		3
51	x 2,5	0, 1445	9'91					141		0'28	ill.	
7	x 2,5	0, 154	18,85				-	-		81,7		
9	× 3	0, 1698	22,9			U				74.1		
63,5	63,5 x 3	0, 1807	26,0							9.69	91	
2	x 2,5	0,204	33,2		L					61.5		
91	× 3	0,22	38,5					7.1		57.17		5
20	x 3	0,2294	41,9		24		ini ini	ila Deri		54,8	T.	
108	x 5,75	0,316	79,4	4	25×3	59,7	58,5	0.3144	0, 157	39.8	9'501	0'89
118	* ×	0.3455	95,0	4	30×3,5	66,72	80,86	0, 3772	0, 1886	364	108,4	0,99
433		0 202	,,,,	*	35×4	84,22	103,48	0.44	0, 22	00	6'86	59,2
3		cec'n	155,1	4	38×4	77,3	100.0	0,4776	0, 2388	0/40	112,2	63,1
143	x 4,25	0,4225	142,1	4	38 ×4	96,6	119,3	0,4776	0,2388	29.75	93,1	55,4
152	x 4.25	0,451	162,0	4	38×4	116,6	139,3	0,4776	0,2388	27,85	9'61	49,5
171	x 4,5	0,509	206,0	9	30×3,5	163,58	1	0,5658	1	24.7	65,65	1
195		A 440	240.5	9	30.75	\$0.25 107 58		0.5658	1	22 85	56.4	1

Es soll sein

die Roststabbreite = 16 mm nach LON

= 10 mm fjir flußeiserne Roststäbe stark verbreitert, wenn die Brennzone hochgelegt werden soll, damit die Roststäbe kühl gehalten werden können, beispielsweise bei Anthrazit. Zuweilen wird in solchem Falle der Rost aus gelochten Platten gebildet

- die Beziehung zwischen Rostfläche und Gasquerschnitt R /q=6.0; -7.5 mit R = Rostfl. in m², q = ges. Gasquerschnitt in den Rohren in m²
- die Feuerbüchsheizfläche 1/7-1/12 der Rohrheizfläche
- der Wassersteg zwischen den Rohren mindestens 16, möglichst 20 mm
- der Dampfraum im Kessel gleich dem 20÷22 fachen Inhalt eines Zwilling-Zylinders, oder für

kleine Naßdampfkessel
$$\sim \frac{5500}{H_V + 250}$$
 große Naßdampfkessel $\sim \frac{8000}{H_V + 500}$ in Liter je m² fb. Verdampfungsheizfläche fungsheizfläche $\sim \frac{6000}{H_V + 200}$

- die vom Dampfraum beanspruchte Sehnenhöhe im Langkesselquerschnitt etwa $^{1}/_{6}$ des Kesseldurchmessers bei niedrigstem, etwa $^{1}/_{6}$ bei höchstem Wasserstand
- der Unterschied zwischen dem höchsten und dem niedrigsten Wasserstand (Höhe des Speiseraumes) 120÷180 mm
- die Größe der Verdampfungsoberfläche in % der m²-Größe der fb. Verdampfungsheizfläche mindestens

$$\begin{array}{ll} 3.7 & \frac{H_V + 50}{H_V + 6} & \text{für Naßdampfkessel} \\ 3.3 & \frac{H_V + 110}{H_V + 10} & \text{für Heißdampfkessel} \end{array}$$

die Beanspruchung der Verdampfungsoberfl. 750-:-1000 kg Dampf/m2-h

der Wasserraum in 1 je m2 fb. Verdampfungsheizfläche

etwa 31 +
$$\frac{120}{\text{Hy}}$$
 für kleine Naßdampfkessel etwa 33 + $\frac{250}{\text{Hy}}$ für große Naßdampfkessel etwa 37 + $\frac{400}{\text{Hy}}$ für Heißdampfkessel

die Feuerbiichstiefe (Krebstiefe) für

langflammigen Brennstoff (deutsche Steinkohle, Preßkohle, Holz, Torf) mindestens 500 mm

kurzflammigen Brennstoff (Anthrazit, Staubkohle, Braunkohle, feine Steinkohle) mindestens 200, möglichst 250-2-500 mm Koks (möglichst auch für Holz) mindestens 700 mm

- der Abstand der Überhitzer-Umkehrenden von der Feuerbüchsrohrwand etwa 400∸700 mm, bei Verbrennungskammer bis herunter zu etwa 200 mm
- die Dauerleistung des Heizers höchstens 2 t Kohlen/Stunde, darüber hinaus ist der Einbau eines Stokers erforderlich (siehe S. 188).

Auf den Stehkessel entfallen etwa 60÷95 l Wasser je m² Feuerbüchsheizfläche.

Der niedrigste Wasserstand liegt nach \S 3 der "Allg. poliz. Best." 100 mm über Feuerbüchsdecke.

Die Kesseldruckprobe muß nach BO \S 43 (9) bei Kesseln mit einem Probedruck von 1,3 p, mindestens aber (p + 5) atű vorgenommen werden, wenn p = zulässiger Kesseldruck.

Für Lokomotiven, die nicht der Aufsicht der Deutschen Bundesbahn unterstehen, ist gemiß den "Allgemeinen polizeilichen Bestimmungen über die Anlegung von Landdampfkesseln" nach dem Stand vom 31. 12. 1944 mit einem Probedruck von 1,3 p, mindestens aber mit (p+1) atü zu rechnen, sofern keine Sonderbestimmungen vorliegen.

Zweckmäßige Schütthöhe auf dem Rost (Brennschichthöhe) von

Anthrazit												i,							70÷ 80 mm
Steinkohle				*:			98	22			125		*		*0		*		90÷130 mm
Deutscher	Bı	a	un	kc	h	le			*	*				*	60		*	6	200÷300 mm
Holz																4			300 <u>÷</u> 600 mm

Die Höhenlage des Lokomotivkessels innerhalb der baulich möglichen Grenzen beeinflußt die Standsicherheit der Lokomotive bei den bisher üblichen Geschwindigkeiten nicht wesentlich. Hohe Kessellage wirkt günstig auf die Ruhe des Lokomotivlaufes ein, beschränkt aber die Fahrgeschwindigkeit in Gleisbögen.

Ausgeführte Lokomotiven "höchster Kessellage" Zahlentafel 16

Spur S mm	Bauart	Bahn	m Höchst- V geschw.	Kesselmitte	hS	Erstes Baujahr
600	1D1 + Tender	Südafrikan. Staatsb.	30	1750	2,92	1912
750	1 E 1 - Tenderlok.	Deutsche Reichsbahn	30	2100	2,8	1928
1000	2 C 1 - DrillSchnellzuglok.	Siamesische Staatsb.	80	2560	2,56	1928
1000	1 E 2	Araraquara-Bahn (Brasilien)	80	2700	2,70	1938
1067	1 B 1 - Tenderlok.	Deli-Bahn (Indonesien)	68	2700	2,53	1928
1067	2 C 1 class 16 E	Südafrikan. Staatsb.	113	2819	2,63	1935
1435	1 C1 P-Lok., Reihe 23	Deutsche Bundesbahn	120	3250	2,27	1950
1435	1 D 2 - Schnellzuglok.	Österr. Bundesbahn	110	3400	2,37	1928
1524	2 G 2 Klasse AR	Russische Staatsbahn	60	3650	2.38	1935

Zur Ermittlung der Wärmeübertragung im Kessel und der Heißdampftemperatur

Zum Verbrennen von 1 kg Steinkohle sind erforderlich etwa 11 kg = 9 Nm³ Frischluft.

Auf 1 kg Steinkohle kommt eine Rauchgasmenge von etwa 13:14 kg = 10.8 - 11.7 Nm3.

Der Luftüberschuß der Feuerung beträgt 30 ÷ 70 % der zum Verbrennen theoretisch erforderlichen Luftmenge.

Es beträgt bei Verbrennung von Steinkohle

die Rosttemperatur (Feuerbett-Temperatur) und die Temperatur unmittelbar über dem Rost zwischen 1300 und 1500°C (Eintluß der

die Temperatur im Feuerraum 1100-:- 1500° C

die Temperatur der Rauchgase an der Rauchkammerrohrwand in Abhängigkeit von der Heizflächenbelastung 320--420° C

der Unterdruck im Aschkasten 5÷20 mm WS. (Er bei einer der sollte sein möglichst 0 mm WS) betr. Kesselder Unterdruck im Feuerraum nahe der Feuerbüchsbauart ange-

Rohrwand 25:65 mm WS messenen der Unterdruck in der Rauchkammer 70 bis 130mm WS (bis zu Heizflächen-

400 mm WS versuchsweise bei französischen Lok um Rostbelastungen von etwa 1000 kg/m²-h zu erreichen). die mittlere Dampfgeschwindigkeit in den Überhitzerrohren etwa

20 - 22 m/sec die mittlere Rauchgasgeschwindigkeit in den Rohren etwa 30--40 m/sec

Dauerbelastuna

die Luftgeschwindigkeit in den Rostspalten 4-6 m/sec

der Wandungsdruck des Dampfes im Blasrohrkopf bis zu etwa 0,2 atii.

Wegen der Vielzahl der Einflüsse läßt sich die Heißdampftemperatur an Hand von Vergleichswerten nur angenähert beurteilen. Genauere Ergebnisse setzen eine exakte Wärmeübertragungsrechnung voraus, die alle Einzelheiten genauer zu erfassen gestattet. Dabei ist zu beachten:

1. Verbrennung auf dem Rost

Verbreuuungsverluste abhängig von der Rostanstrengung. Mittlere Werte Bild 78. Luftüberschuß in den Grenzen von 1,2-:-1.8 schwankend, kleinere Werte bei hoher Rostanstrengung.

Brenntemperatur der Kohle auf dem Rost abhängig von Heizwert und Gehalt der Kohle an flüchtigen Bestandteilen, Luftüberschuß, Feuerbüchsheizfläche sowie Größe und Lage des Feuerschirmes.

Da auf dem Rost nur ein Teil des Wärmeinhaltes der Kohle frei wird und außerdem Wärme abgestrahlt wird, bleibt die Rost-Temperatur weit unter der theoretischen Höchsttemperatur.

2. Wärmeilbergang in der Feuerblichse

Temperatur der Gase in der Feuerbüchse nicht konstant, sondern zunächst entsprechend dem Verbrennen der flüchtigen Bestandteile zunehmend, erst im letzten Teil des Weges der Gase durch die Feuerbüchse abnehmend.

Temperatur der Gase an der Fenerbüchs-Rohrwand von der Summe der vorstehend genannten Einflüsse abhängig. Durchschnittswerte ergeben die Gleichungen von Syromiatnikoff

$$t_{e} = 670 \left(\frac{B_{h} \cdot H_{u}}{10^{5} H_{b}} \right)^{0.3} - 100 \left(\frac{B_{h} \cdot H_{u}}{10^{6} H_{b}} \right)^{3}$$

und Klie — C. Th. Müller
$$t_e = 1416 \left(\frac{A \cdot R}{H_b} \cdot \eta_f\right)^{0,226}$$

In den Gleichungen ist nicht berücksichtigt der Luftüberschuß und der Gehalt der Kohle an flüchtigen Bestandteilen. Sie gelten daher nur für bestimmten Luftüberschuß (etwa 1.35-1.45) und normale Kohlensorten.

Gesamte in der Feuerbiichse übertragene Wärme gegeben durch

$$Q_F = B_h \cdot H_u \cdot r_f - Q_{Str} - G \cdot c_p \cdot t_e$$

 $Q_{Str} = V$ erlust durch Strahlung in den Aschkasten ≈ 2 % der aufgewandten Wärmemenge, G = Gasgewicht in kg/h

ne = Wirkungsgrad der Feuerung (Verbrennung)

Rauchgasgewicht nach Bild 80 (Steinkohle) und Bild 81 (flüssige Brennstoffe) unter Berücksichtigung der Verluste an Unverbranntem (Kohlenstoffgehalt von Asche und Schlacke, Rauchkammerlösche, Funkenauswurf).

Vertellung der Rauchgase auf Heiz- und Rauchrohre abhängig vom Querschnittsverhältnis, den Strömungswiderständen in den Rohren und dem Druckunterschied zwischen Feuerbüchse und Rauchkammer.

Dieser Druckunterschied ist, bedingt durch die Stellung des Feuerschirmes und die Strömung der Gase um den Feuerschlrm, oft für den oberen und unteren Teil der Rohrwand verschieden, so daß er bei der Bestimmung der Gasverteilung berücksichtigt werden muß.

3. Wärmeübertragung in den Heiz- und Rauchrohren

Während in der Feuerbüchse der Hauptanteil der Wärme durch die Strahlung der leuchtenden Flamme, der Gase und der glühenden Kohle auf dem Rost übertragen wird, ist die Gasstrahlung in den Rohren wegen ihrer Abhängigkeit von der Schichtdicke nur gering und nur in den nicht von Überhitzerrohren besetzten Rauchrohrenden von Einfluß. In den Rohren erfolgt die Wärmeübertragung in der Hauptsache durch Konvektion.

Wärmeübergangszahl zwischen Gas und Rohrwand abhängig von Gasgeschwindigkeit, Gastemperatur und Rohrdurchmesser.

Die von Schack aus einer Vielzahl von Versuchen entwickelten Gleichungen

ergeben
$$\alpha_1 = (3.6 + 0.002 \text{ t}) \frac{w_0^{0.75}}{d^{0.25}}$$

mit t = mittlere Gastemperatur im Rohr in °C

 $\rm w_{\rm O}=Gasgeschwindigkeit$ in m/sec, bezogen auf Normalzustand von 0 °C und 760 mm QS.

Die Formeln anderer Forscher geben zum Tell abweichende Werte an.

Da d Im Nenner steht, geben also kurze Kessel mit engen Rohren bessere Ergebnisse als lange Kessel mit weiteren Rohren. Für gleiche Ein- und Austrittstemperatur und gleiche Gasgeschwindigkeit erfordern weite Rohre eine etwas größere Helzfläche bzw. größere Rohrkennziffern als engere Rohre.

Wärmedurchgangszahl k =
$$\frac{1}{\frac{1}{\alpha_1} + \sum_{k=1}^{\infty} \frac{\delta}{k} + \frac{1}{\alpha_2}}$$

Es ist & Wandstürke des Rohres bzw. des Kesselstein- oder Rußbelages in mm.

Der Ausdruck $\sum \frac{d}{d}$ erfaßt den Wärmedurchgang durch die Rohrwand und den Ruß- und Kesselsteinbelag.

in kcal/mm-h °C

Kesselstein 100÷2000 je nach Zusammensetzung

Da & für Kesselstein und Ruß viel kleiner als für Stahl ist, so haben die Verunreinigungen großen Einfluß auf den Wärmedurchgang.

Die Wirmeibergangszahl a. zwischen Rohr und siedendem Wasser ist groß gegen α₁, so daß der Wärmedurchgang im Wesentlichen durch α₁ (Gasgeschwindigkeit) und die Verunreinigungen der Rohroberfläche bedingt ist. Der obige Ausdruck für die Wärmedurchgangszahl k wird daher zweckmäßig dadurch ersetzt, daß man α1 mit einem sogen. "Verunreinigungsfaktor" β multipliziert. Es wird dann $k = \beta \cdot \alpha_1 = (0.9 \div 0.95) \alpha_1$

Zur Berücksichtigung der Wärmeabstrahlung der Kesseloberfläche ist von der gesamten, durch die Verdampfungsheizfläche ibertragenen Wärmemenge ein Abzug vorzunehmen, der bei roller Kesselanstrengung je nach Fahrgeschwindigkeit etwa 1--1.5 % der aufgewendeten Wärmemenge Bh · Hu beträgt. Die abgestrahlte Wärmemenge ist unabhängig von der Kesselanstrengung, so daß der Anteil von Bh · Hu bei geringerer Kesselanstrengung wächst.

4. Dampferzeugung

Die Dampferzeugung des Kessels ergibt sich aus $D = \frac{Q}{i^{\prime\prime} - t_W}$

$$D = \frac{Q}{i'' - t_w}$$

mit tw = Speisewassertemperatur in °C

und i" = Wärmeinhalt des Sattdampfes in kcal/kg

Für i" ist ein Dampfgehalt von 0,97 bis 0,98 anzunehmen. Nur in Ausnahmefällen tritt größere Dampffeuchtigkeit auf.

5. Überhitzung

Die Helßdampftemperatur erhält man als abschließendes Ergebnis, indem die Im Überhitzer erzielte Wärmeinhaltssteigerung (i--i") zum Wärmeinhalt des Sattdampfes hinzuaddiert wird; die zu dem so gefundenen Wirmeinhalt i des Heißdampfes zugehörige Dampftemperatur wird am besten aus dem i-s-Diagramm ermittelt (s. S. 408).

6. Wärmebilanz

Durch Aufstellung einer Wärmeblianz am Schluß der Rechnung kann überprüft werden, ob die ermittelten Abgastemperaturen den übertragenen Wärmemengen entsprechen. Für den Langkessel muß die den Rauchgasen entzogene Wärmemenge gleich der von den Heizflächen aufgenommenen Wärmemenge sein.

Daten zur Wärmeberechnung des Kessels

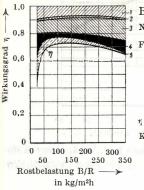


Bild 75. Kesselverluste

Nach Meineke-Röhrs, 1949, S. 24

Fläche 1 Verlust durch Unverbranntes

2 Verlust durch unvollständige Verbrennung

3 Abhitze-Verluste

4 Strahlungs-, Aschkasten-, Funken-Verluste

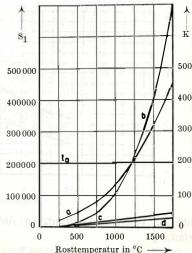
5 Abkühlungs-Verluste

 $\eta = \text{Kesselwirkungsgrad}$

Kesselanstrengung A = 3

Bild 76. Wärmeilbergang durch Strahlung und Leitung in Abhängigkeit von der Rosttemperatur

Aus "Hanomag-Nachrichten" 1924, S. 200


a = Linie des Wärmedurchgangs für Strahlung K in kcal/m2-h

b = Linie des Wärmeübergangs durch Strahlung S₁ in kcal/m²-h, bezogen auf die Kesselheizfläche

c = Wärmeübergang bei reiner Berührung für $K = 30 \text{ in kcal/m}^2-h$

reiner Berührung für K = 20 in kcal/m²-h = Wandtemperatur des

d = Wärmeibergang bei Kessels

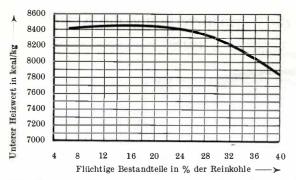


Bild 77. Untere Heizwerte der Ruhrkohlen und der Aachener Kohlen in Abhängigkeit von ihrem Gehalt an flüchtigen Bestandteilen

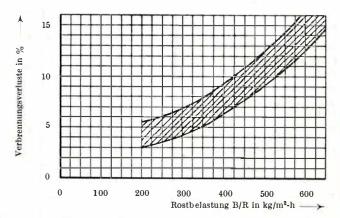


Bild 78. Verbrennungsverluste in Abhängigkeit von der Rostbelastung

nach Messungen an Lokomotiven der Deutschen Bundesbahn

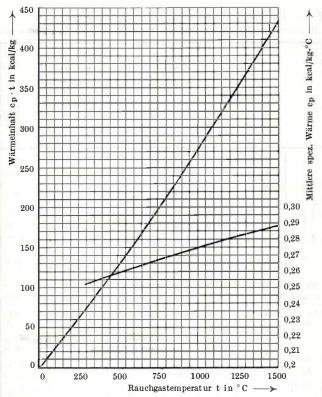


Bild 79. Mittlere spez. Wärme

und Wärmeinhalt der Rauchgase von Westfälischer Steinkohle

Gültig für 1,3 bis 1,5 fachen Luftüberschuß und 6 bis 13,5 % Verlust an Unverbranntem, wobei der größere Verlust geringerem Luftüberschuß zugeordnet ist. Verbrennungsluft 0,6 Gewichtsprozente Feuchtigkeit. (Spez. Wärmen nach D. D. Wagman Res. Pap. 1634 / Febr. 1945. — BWK 1950, Heft 6 und 7, Arbeitsblatt 46).

Daten zum Verbrennungsvorgang nach Brückmann:

"Heißdampflokomotiven mit einfacher Dehnung des Dampfes" Berlin und

							Steink	ohle		the V
				1	2	3	4	5	6	7
A	rt des	s Heizstof	fes	Westfälischer Antbrazit	Steinkohlen-Ziegel	Westfälische Kohle	Schlesische Kohle	Genäßte backende Gruskohle	Belgische Gruskohle	Schantung- Fangtse-Kohle
SG SG	I	Cohlensto	off. C	85,42	82,0	80,0	75,0	67,08	67,90	64,97
toff	- 1	Vassersto	off . H	3,82	4,2	4,7	5,0	5,00	4,55	3,89
100 Gewichtsteile Iufttrockenen Heizstoffes enthalten:		Sauer- und Stick-Stof		4,68	3,7	6,0	10,0	3,33	10,35	5,58
Gewichts kenen He enthalten	8	schwefel	S	1,23	1,2	1,5	1,0	1,25		0,99
cker ent	A	ufges.Wa	asserW	0,95	1.7	1,3	2,5	18,34	1,20	5,80
10 inftro	A	sche .		3,90	7,2	6,5	6,5	5,00	16,00	18,77
Jul	Hei n. V	zwert:Bor erbdsfor	mbe h _c	7975 7882	7750 7746	7650 7655	7100 7162	6610 6684	6500 6438	6224 6157
Zurvollk	. Ver	brenng.	L _{kI} kg	10,04	10,81	10,67	10,00	9,38	8,97	8,66
nötige re	chn. I	uftmg.	_{kl} m ³	8,49	8,32	8,20	7,69	7,22	6,89	6,66
Rechn.Ra gasiner		n = 1	kg m³	12,19 8,98	11,90 8,80	11,86 8,80	11,36 8,48	10,48 7,93	10,25 7,65	10,17 8,23
Wirklic	ho	n = 1,5	kg m³	17,31 13,23	17,30 12,96	17,19 12,90	16,36 12,33	15,17 11,54	14,74 11,09	14,50 11,56
Rauchg	as-	n = 1,6	kg m³	18,31 14,08	18,38 13,79	18,26 13,72	17,36 13,09	16,11 12,26	15,63 11,78	15,37 12,23
		n = 1,7	kg m ³	19,52 14,92	19,47 14,62	19,33 14,54	18,36 13,86	17,05 12,98	16,76 12,47	16,23 12,89
Verbrenni	_		n = 1 n = 1	2809 2472	2784 2450	2745 2416	2575 2266	2476 2178	2642 2372	2713 ; 2388
Warm T_0 für η		$\eta = 0.88$	n= 1,5 n = 1,6 n= 1,7	1740 1643 1556	1676 1576 1488	1660 1563 1475	1584 1494 1413	1536 1451 1374	1622 1529 1447	1647 1551 1466

Wiesbaden: C. W. Kreidels Verlag 1920, S. 635

Zahlentafel 17

	Bı	aunkoh	le		H	olz		Er	döl	
8	9	10	11	12	13	14	15	16	17	18
Oberbayerische Molasse-Kohle	Serbische Segne-Koble	Braunkohlen-Ziegel	Böhnische	Sächsische	Quebracho	Kiefern	Blauöl von Peine	Naphtha- Rückstände von Baku	Naphtha- Rückstände von Java, Langkat	Naphtha- Rückstände von Baku
53,0	59,47	52,0	47,72	45,40	47,97	40,5	85,53	87,1	87,59	86,30
4,0	3,94	4,3	4,20	3,73	5,08	5,0	11,40	11,7	11,66	13,60
12,0	20,69	16,0	8,87	10,72	37,51	34,0	_	.1,2	0,28	0,10
5,0		2,0	0,32	3,59	123	-	_	_	0,23	_
9,0	13,00	17,0	24,79	29,27	8,22	20,0	-	-	0,15	_
17,0	2,90	8,7	14,10	7,29	1,22	0,5	0,07	_	0,09	8-
5200 5089	5081 5132	4800 4827	4425 4620	4319 4321	4500 3949	3950 3378	10006 10234	10220 10405	10383 10472	11460 10930
7,20	7,33	6,79	6,59	6,22	5,67	4,94	14,06	14,06	14,15	14,67
5,54	5,64	5,23	5,07	4,57	4,36	3,80	10,81	10,81	10,88	11,28
8,55 6,41	9,20 6,92	8,49 6,45	7,83 6,02	7,61 5,84	8,29 6,32	7,40 5,74	14,79 11,37	15,10 11,62	15,11 11,66	15,67 12,34
15,03 11,39	12,86 9,74	11,89 9,07	11,12 8,55	10,71 8,24	11,12 7,63	9,87 7,64	21.82 16,77	22,13 17,02	22,18 17,09	23,01 17,78
17,19 13,05	13,60 10,30	12,57 9,59	11,78 9,06	11,33 8,71	11,69 8,06	10,36 8,02	23,23 17,86	23,54 18,10	23,60 18,18	24,47 19,01
13,59 10,29	14,33 10,87	13,24 10,11	12,44 9,57	11,96 9,04	12,26 9,37	10.86 8,40	24,63 18,94	24,94 19,19	25,02 19,28	25,94 20,03
2568 2259	2310 2032	2335 2055	2296 2020	2306 2029	2241 1972	2146 1889	2351 für η=	2348 1 und n =	2359 = 1,4 u. 1	2376 5 u.1,6
1589 1499 1418	1456 1378 1308	1475 1397 1326	1437 1358 1288	1454 1377 1307	1476 1406 1342	1432 1366 1306	1739 1633 1538	1746 1647 1547	1752 1646 1553	1769 1661 1567

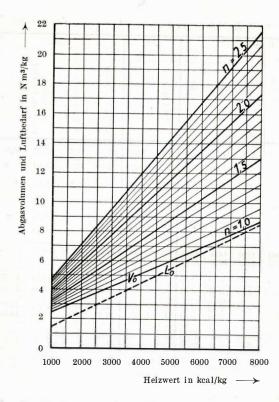


Bild 80. Abgasvolumen und Luftbedarf für feste Brennstoffe nach Rosin und Fehling Erläuterungen unter nebenstehendem Bild 81

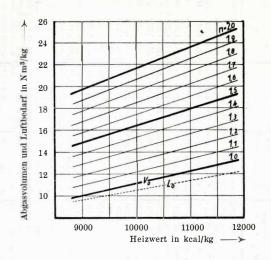


Bild 81. Abgasvolumen und Luftbedarf für flüssige Brennstoffe Nach Rosin und Fehling: "Das Jt-Diagramm der Verbrennung"

1 N m³ = 1 Normal-Kubikmeter nach DIN 1871 = 1 m³ bei 0° C und 760 mm QS = 10.33 m W S $L_0 = Luftbedarf$ bei der nur theoretisch denkbaren Verbrennung Vo = Abgasvolumen

Bei praktischen Verbrennungsvorgängen beträgt das tatsächliche Abgasvolumen $V_0 + (n-1) \cdot L_0$ (in Bild 80 und 81 verzeichnet für Luftüberschüsse von 150 bzw. 100 %).

ohne Luftüberschuß (n = 1,0)

(Aus "Regeln für Leistungsversuche an Ventilatoren und Kompressoren", VDI-Verlag 1929) Das Luftgewicht in kg/m3 in Abhängigkeit von Feuchtigkeit und Barometerstand

00		ĺ	ľ			ľ			ľ									
Temperatur		720 mm (OS	730	730 mm (OS	740	740 mm (os	750	750 mm	os	760	760 mm	OS	770	770 mm	OS
trockenen Thermo- meters	relat.	relat. Feuchtigk. 60 80 100 % % %	100 %	relat.	relat. Feuchtigk. 60 80 100 % % %	tigk. 100 %	relat.]	relat. Feuchtigk. 60 80 100 % % %	100 %	relat.	relat. Feuchtigk. 60 80 100 % % %	100 %	relat.	relat. Feuchtigk. 60 80 100 % % %	htigk. 100 %	relat.	relat. Feuchtigk 60 80 100 % % %	tigk. 100 %
101	1.271	1.271	_	1.289	289 1.289	-	307	1.307		1.325	_	1.325	1.342	1.342 1.342	_	1.360	1.360	
∞	1,261	1,261		1,279	1,279	1,279 1,297	297	1.297			1,316		1,332	1,332 1,332	_	1,350	1,350	1,350
9	1,252	1,252	1,251	1,270	1,270	1,269 1,288	1,288	1,288	1,287		1,307	1,306	1,322	2,322	1,322	_	1,340	1,340
4	1,243	1,243	1,242	1,260	1.260	1.260	1,278	1,278	1,277	1,297	1,297	1,296	,311	1311		1		
ا ده	1,234	1,233	1,232	1,251	1,250	1,250	1,268	1,268	1,267	1,287	1,286	1,285	1,301	1,300	1,300	1.320	1,319	1,319
0 #	1,225	1.224	1,223	1,242	1,241	1,240	1,259	1,258	1,257	1,277	1,276	1,275	1,291	1,290	1.290	1,310	1,300	1,309
+ 0.1	1,216	1,215	1,214	1,233	1.232	1.231	1,249 1,248	1.248	1.247	1.267		1,266 1,265 1,282 1,281	1,282	1.281	1.280	1.301	1.300	1,300
+	1,207	1,206		1,224	1,223	1,222	1,240	1,239	238	1,257		1,255	1,273	1,273 1,272	1,271	1,291	1,290	1.289
9+	1,198	1,197	1,196	1,215	1,214	1,213	1,230	1,229	955	1,248	1.247	1,246	1,264	1,263	1,262	2,281	1.280	1,279
∞ +	1,189	1.188	1,187	1,205	1,204	1,203	1,22,1	022	1,219			1,237	1,255	1,254	1,253	1.271	1,270	1,269
+ 10	1,180	1,180 1,179	1,178	1,196	1,195	1,194	1,212,1	1,211	1,210	1,230	1,229	1,229 1,228 1,245 1,244 1,243	1,245	1,244	1,243	1,262	1,261	1,260
+ 15	1,172	1,170	1,169	1,187	1,186	1,185 1,203	1,203	1,202	1.201	1,221	1.220	1,219	1,235	1,235 1,234	1,233	1,253	1,252	1,251
	1,163	1,161	1,160	1,178	1,177	1,176	194	1,193	1,192	1,212	1,211	1,210	1,226	1,226 1,225 1,224	1,224		1,243	1.242
+ 16	1,154	1,152	1,151	1,169	1,168	1,167	185	1,183	1,181	1,203	1,201	1,199	1.217	1,217 1,215 1,213	1,213	1,235	1,233	1,231
+ 18	1,145	1,143	1,141	1,161	1,159	1,157	1,176	1,174	1,172	1,194	1,192	1.192 1.190 1.208 1.206	1,208	1,206	1,204	1,225	1,223	1,22,1
+ 20	1,136	1,134	1,132	1,152	1,150	1,148 1,167 1,165	1,167		1,163	1,185	1,183	1,183 1,181	1,199	1,199 1,197	1,195	1,216	1,214	1,212
+ 22	1,127	1,125	1,123	1,143	1,141	1,139	1,158	1,156	1,154	1,176	1,174	1,172	1,190	1,188	1,186		1,205	1,203
+ 24	1,118	1,116	1,114	1,134	1,132	1,130	1,150 1,147		1,144	1,167	1,164	1,162	1,181	1,178	1,175	1,198	1,195	
+ 26	1,110	1,107	1,104	1,125	1,123	1,121	1,141		1,135	1,158	1,155	1,155 1,152		1,172 1,169 1,166	1,166	1,189	1,186	1,183
+ 30	1,094		1,090 1,087	1,109	1,105	1,101	1,124	1,120 1,116		1,140	1,136	1,132	1,154	1,150	1,146	1,171	1,167	1,163
+ 34	1.077	1.072	1,068	1.092 1.087		1.082	1.107	1.102 1.097		1,122	1.117	1.112		1,136 1,131	1,126	1,153	1.148	1,143
+ 38	1,059	1,053	1,047	1,074	1,068	1,062	000.1	1,084	1,078	1,104	1,098	1,098 1,092				1,135	1,129	1,123
+	1.041	.041 1,034	1,027	1,056 1,049		1,042 1,072	1,072	1,065 1,058	1,058	1,086	1.079	1,079 1,072	1,100	1,100 1,093 1,086	1,086	1.117	1,110	1,103
+ 46	1,023	,023 1,015	1,007	1,038 1,030	1,030	1.022 1.054 1.046 1.038	1,054	1,046	1,038	1,068	1,060	1,060 1,052 1,082 1,074 1,066	1.082	1,074	1,066		1,090	1,082
+ 20	1,005	0,995	0,985	$1,005 \ 0,995 \ 0,985 \ 1,020 \ 1,010 \ 1,000 \ 1,035 \ 1,025 \ 1,015 \ 1,050 \ 1,040 \ 1,030 \ 1,064 \ 1,05$	1,010	1,000	1,035	1,025	1,015	1,050	1,040	1,030	1.064	1,054	1,044		1.079 1.069 1.059	1,059

Tafel des **gesättigten** Wasserdampfes nach den VDI-Wasserdampftafeln 1941 i-s-Diagramm S. 408 Zahlentafel 19

Dampfdruck absolut ata kg/cm ²	Temperatur t	Flüssigkeits- wärme i' kcal/kg	Ver- dampfungs- wärme r kcal/kg	Rauminhalt v'' m ³ /kg	Spez. Gewicht ''' kg/m ³
	99,09	99,12	539,4	1,725	0,5797
1		119,87	525,9	0,9016	1.109
2	119,62	133,4	516.9	0,6166	1,622
3	132,88		509,8	0,4706	2,125
4	142,92	143,6	503,7	0.3816	2,621
5	151,11	152,1		0,3213	3,112
6	158,08	159,3	498,5		3,600
7	164,17	165,6	493,8	0,2778	
8	169,61	171,3	489,5	0,2448	4,085
9	174,53	176,4	485,6	0,2189	4,568
10	179.04	181,2	481,8	0,1981	5,049
11	183,20	185,6	478.3	0,1808	5,530
$1\overline{2}$	187,08	189,7	475,0	0,1664	6,010
13	190,71	193,5	471,9	0.1541	6,488
14	194.13	197,1	468,9	0.1435	6,967
	197,36	200,6	466,0	0.1343	7,446
15		203,9	463,2	0.1262	7,925
16	200,43		460.4	0,1190	8,405
17	203,35	207,1	457,8	0.1126	8,886
18	206,14	210,1		0.1068	9.366
19	208,81	213,0	455,2	0,1000	
20	211,38	215,8	452,7	0,1016	9,846
21	213,85	218,5	450,2	0,09682	10,33
26	224,99	230,8	438,7	0,07846	12,75
31	234,57	241,6	428,1	0,06583	15,19
36	243,04	251,2	418,3	0,05658	17,68
43	250,64	259,9	409,0	0.04950	20,20
41		275,6	391,4	0.03940	25,38
51	263,93	289,7	375,0	0,03251	30,76
61	275,37	302,2	359,6	0.02751	36,35
71	285,44		344,8	0.02370	42,20
81	294,48	313,8	330,1	0.02069	48,34
91	302,71	324,7	550,1		
100	309,53	334,0	317,1	0,01845	54,21
120	323,15	353,9	288,0	0,01462	68,42
150	340,56	381,7	243,2	0,01065	93,90
180	355,35	410,2	192,3	0,007809	128,00
200	364,08	431,5	150,8	0,00620	161,20
224	373.60	478,0	54,0	0,00394	254,00

Tafel des **überhitzten** Wasserdampfes nach den VDI-Wasserdampftafeln 1941

i-s-Diagramm S. 408

acii de	d VDI-V	v asserdar	nprtarem 1	741	Zal	hlentafel 2
Dampf- druck absolut		eratur impfes	Über-	Wärme- inhalt des Dampfes aus Wasser	Raum- inhalt	Spez. Gewicht
ata kg/cm ²	ge- sättigt °C	über- hitzt °C	°C	von 0 °C i" kcal/kg	v" m³/kg	γ"
13	190,5	200 220 240 260 280 300 320 340 360 380 400	9,5 29,5 49,5 69,5 89,5 109,5 129,5 149,5 169,5 209,5	671,7 683,8 694,9 705,6 715,9 726,2 736,5 746,7 756,9 767,1 777,3	0,159 0,168 0,176 0,185 0,193 0,201 0,209 0,216 0,224 0,232 0,239	6,301 5,960 5,669 5,414 5,187 4,980 4,794 4,621 4,460 4,314 4,177
14	194	200 220 240 260 280 300 320 340 360 380 400	6 26 46 66 86 106 126 146 166 186 206	670,2 682,7 694,0 704,7 715,2 725,6 735,9 746,2 756,4 766,7 776,9	0,146 0,155 0,163 0,171 0,179 0,186 0,193 0,201 0,208 0,215 0,222	6,835 6,456 6,131 5,851 5,602 5,379 5,173 4,985 4,812 4,651 4,505
15	197	200 220 240 260 280 300 320 340 360 380 400	3 23 43 63 83 103 123 143 163 183 203	668,5 681,5 693,0 703,9 714,5 725,0 735,3 745,7 756,0 766,3 776,6	0,136 0,144 0,152 0,159 0,166 0,173 0,180 0,187 0,194 0,200 0,207	7,380 6,954 6,601 6,293 6,021 5,777 5,556 5,353 5,165 4,993 4,881
16	200,5	220 240 260 280 300 320 340	19,5 39,5 59,5 79,5 99,5 119,5	680,3 692,0 703,1 713,8 724,4 734,8 745,2	0,134 0,141 0,148 0,155 0,162 0,168 0,175	7,457 7,072 6,739 6,443 6,181 5,938 5,721

Fortsetzung von Zahlentafel 20: Tafel des überhitzten Wasserdampfes

Dampf- druck	Tempe des Dai		Über-	Wärme- inhalt des Dampfes aus Wasser	Raum- inhalt	Spez. Gewicht
absolut ata kg/cm ²	ge- sättigt °C	über- hitzt °C	hitzung °C	von 0 °C i" kcal/kg	v" m³/kg	γ'' kg/m³
16	200,5	360 380 400	159,5 179,5 199,5	755,5 765,9 776,2	0,181 0,188 0,194	5,519 5,333 5,163
17	203,5	220 240 260 280 300 320 340 360 380 400	16,5 36,5 56,5 76,5 96,5 116.5 136,5 156,5 176,5 196,5	679,0 691,0 702,3 713,1 723,8 734,2 744,7 755,1 765,4 775,8	0,125 0,133 0,139 0,146 0,152 0,158 0,164 0,170 0,176 0,182	7,975 7,547 7,189 6,868 6,583 6,325 6,090 5,875 5,675 5,492
18	206	250 300 350 400 450	44 94 144 194 244	695,7 723,2 749,4 775,4 801,5	0,128 0,143 0,158 0,172 0,186	7,825 6,988 6,345 5,824 5,388
19	209	250 300 350 400 450	41 91 141 191 241	694,9 722,5 748,9 775,0 801,1	0,121 0,135 0,149 0,163 0,176	8,299 7,396 6,711 6,154 5,692
21	214	250 300 350 400 450	36 86 136 186 236	692,9 721,3 748,0 774,3 800,5	0,108 0,122 0,134 0,147 0,159	9,251 8,224 7,446 6,821 6,305
26	225	250 300 350 400 450	25 75 125 175 225	687,8 717,9 745,6 772,3 799,0	0,085 0,097 0,108 0,118 0,127	11,732 10,325 9,302 8,503 7,849
31	234,5	250 300 350 400 450	15,5 65,5 115,5 165,5 215,5	682,1 714,5 743,0 770,4 797,4	0,070 0,080 0,089 0,098 0,106	14,364 12,495 11,206 10,212 9,407

Schluß von Zahlentafel 20: Tafel des überhitzten Wasserdampfes

Dampf- druck	Tempe des Da	eratur mpfes	Über-	Wärme- Inhalt des Dampfes aus Wasser	Raum- Inhalt	Spez. Gewicht
absolut ata kg/cm ²	ge- sättigt °C	über- hitzt °C	hitzung °C	von 0 °C i" kcal/kg	v" m³/kg	γ" kg/m³
36	243	250 300 350 400 450	7 57 107 157 207	675,5 710,8 740,5 768,4 795,8	0,058 0,068 0,076 0,084 0,091	17,188 14,741 13,148 11,945 10,983
41	250,5	300 350 400 450	49,5 99,5 149,5 199,5	707,0 737,8 766,5 794,3	0,059 0,066 0, 0 73 0,080	17,074 15,131 13,704 12,575
46	257,5	300 350 400 450	42,5 92,5 142,5 192,5	702,9 735,1 764,4 792,7	0,051 0,058 0,065 0,071	19,497 17,161 15,489 14,186
50	262,5	300 350 400 450	37,5 87,5 137,5 187,5	699,5 732,9 762,8 791,4	0,046 0,053 0,059 0,065	21,519 18,818 16,938 15,487
60	274,5	300 350 400 450	25,5 75,5 125,5 175,5	690,0 727,1 758,7 788,2	0,037 0,043 0,048 0,053	26,932 23,121 20,644 18,793
70	284,5	300 350 400 450	15,5 65,5 115,5 165,5	679,2 721,0 754,4 784,9	0,030 0,036 0,041 0,045	33,014 27,670 24,474 22,183
80	293,5	300 350 400 450	6,5 56,5 106,5 156,5	666,8 714,3 750,0 781,6	0,025 0,031 0,035 0,039	39,968 32,531 28,450 25,641
100	309,5	350 400 450	40,5 90,5 140,5	699,2 740,4 774,7	0,023 0,027 0,030	43,346 36,900 32,841
120	323	350 400 450	27 77 127	681,4 730,0 767,4	0,018 0,022 0,025	56,338 46,125 40,453
140	335	350 400 450	15 65 115	660,1 718,4 759,8	0,014 0,018 0,021	72,886 56,370 48,520

Das Triebwerk

ist zweckmäßig bemessen, wenn es folgende Bedingung erfüllt: Giinstigste indizierte Zugkraft der Lokomotive

Somit Zylinderdurchmesser (bei Verbundlokomotiven Durchmesser der Niederdruckzylinder dnd)

$$d = \sqrt{rac{D}{z/_2}} \cdot rac{Zi'}{s \cdot p_{m'}}$$
 in cm

- Treibraddurchmesser in mm Hierbel ist D = Zylinderdurchmesser (bei Verbundlokomotiven nur der Niederdruckzylinder dnp) in em

= Kolbenhub in mm

Anzahl der Zylinder (bei Verbundlokomotiven nur der Niederdruckzylinder)

Pm' = mittlerer Kolbendruck in atii bei der günstigsten Füllung, die bei der günstigsten Fahrgeschwindigkeit V' eingestellt wird (bei Verbundlokomotiven der mittlere Kolbendruck des Gesamtdiagrammes Hochdruck + Niederdruck, wirksam gedacht im Niederdruckzylinder)

$$C_{1} = \frac{z}{2} \cdot \frac{d^{2}s}{D} = Zugkraft-Kennziffer$$

$$= \frac{d^{2}s}{D} \qquad \text{für Zwillinglokomotive}$$

$$= 1,5 \cdot \frac{d^{2}s}{D} \qquad \text{für Drillinglokomotive}$$

$$= 2 \cdot \frac{d^{2}s}{D} \qquad \text{für Vierlinglokomotive}$$

$$= 0,5 \cdot \frac{d^{2}s}{D} \qquad \text{für Zweizylinder-Verbundlokomotive}$$

$$= 0,5 \cdot \frac{d^{2}s}{D} \qquad \text{für Dreizylinder-Verbundlokomotive}$$

$$= 1,5 \cdot \frac{d^{2}s}{D} \qquad \text{für Zweizylinder-Verbundlokomotive}$$

$$= 1,5 \cdot \frac{d^{2}s}{D} \qquad \text{für Dreizylinder-Verbundlokomotive}$$

 $= \frac{d^2x_D \cdot s}{D} \left\{ \begin{array}{l} f \ddot{u} r \ \ Vierzylinder \cdot Verbundlokomotive \\ f \ddot{u} r \ \ Dreizylinder \cdot Verbundlokomotive \end{array} \right.$ mit 2 Niederdruckzylindern Die größte indizierte Zugkraft (größte Zylinderzugkraft) beträgt bel etwa

80-90 % Höchstfüllung und pk atil Kesseldruck für einfache Dampfdehnung

90 % Hochstrilling and
$$p_k$$
 attr Kessel ack rule similar p_k attr Kessel ack rule similar p_k etwa z_1 z_1 z_2 = (0.75 \div 0.85) $p \cdot c_1$ in kg

bei $\mathit{Verbund}$ wirkung, falls das Zylinderraumverhältnis $rac{V_{\mathrm{ND}}}{V_{\mathrm{HD}}} \sim 2$

etwa
$$Z_{i_{max}} = 0.5 \text{ p} \cdot \frac{d_{ND}^2 \cdot s}{D} \cdot \frac{z_{ND}}{2} = 0.5 \text{ p} \cdot C_1 \text{ in kg}$$

Als Dauerzugkraft wird $Z_{i_{\mbox{\scriptsize max}}}$ nur selten in Anspruch genommen.

Bei Gelenklokomotiven sollte man an der Reibungsgrenze mit nur $0.9~Z_{\mathrm{im}\,\mathrm{av}}$ rechnen.

Zieht man von Zi den Eigenwiderstand von Lokomotive und Tender (nach S. 49) ab, so erhält man die effektive Zugkraft Z_0 (= Zugkraft am Zughaken).

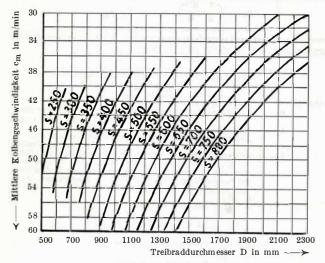


Bild 82. Mittlere Kolbengeschwindigkeit in Abhängigkeit von Kolbenhub s und Treibraddurchmesser bei 10 km/h Fahrgeschwindigkeit

Fahrgeschwindigkeit
$$V = 0.03 c_{\rm m} \cdot \frac{D\pi}{s}$$
 in km/h

mit c_m = mittlere Kolbengeschwindigkeit in m/min

V = Geschwindigkeit in km/h, s = Kolbenhub in mm,

D = Treibraddurchmesser in mm, n = minutliche Drehzahl,

Mittlere Kolbengeschw.
$$c_{\rm m} = \frac{V \cdot s}{1.8 D\pi} = 0.177 \frac{V \cdot s}{D}$$
 in m/sec
$$= \frac{2 s \cdot n}{1000} = 10.62 \frac{V \cdot s}{D}$$
 in m/min

Vgl. hierzu Bild 83, Seite 134 und Bild 105, Seite 159.

Der Treibraddurchmesser ist möglichst nach DIN 1574/76 zu wählen. Er wird von der zulässigen minutlichen Umdrehungszahl beeinflußt (siehe unten). Die mittlere Kolbengeschwindigkeit bei höchster Fahrgeschwindigkeit sollte nicht größer als 8÷9 m/sec sein.

Minutliche Drehzahl $n = 5310 \frac{V}{D}$

V = Geschwindigkeit in km/h und D = Treibraddurchmesser in mm.

Höchstwerte der minutlichen Drehzahlen bei der größten zulässigen Fahrgeschwindigkeit nach TV § 69 Zahlentafel 21

1	2	3	4	5	6
Lokomotiven mit in einem vorderen Drehgestell verei- nigten Laufrad- sätzen oder mit vorderem Krauß- Helmholtz-Dreh- gestell	Lokom otiven mit vorderem Laufradsatz oder vorderem Deichselgestell		omotiven ren Laufr		Lokomo- tiven mit Trieb- gestellen
mit hinterem Laufi ohne hinteren Lauf mit hinterem Drehg gestell ohne hinteres Drehg gestell	iradsatz gestell oder Deich		bei einem ver- schieb- baren End- radsatz	bei zwei ver- schieb- baren Endrad- sätzen	
$n = 340^{\circ}$	n = 300	$n = 260^{1}$	$n = 240^2$	$n = 180^3$	n = 220

1) Bei einem im Verhältnis zu den überhängenden Massen langen, festen Achsstand darf die Drehzahl bis auf 300 erhöht werden.

9) Ist die Bauart der Kupplung zwischen Lokomotive und Tender imstande, Schlingerbewegungen zu dämpfen, so darf die Drehzahl bis auf 300 erhöht werden.

9) Ist die Bauart der Kupplung zwischen Lokomotive und Tender imstande, Schlingerbewegungen zu dämpfen, so darf die Drehzahl bis auf 220 erhöht werden.

*) Bei Schnellfahrlokomotiven ist man bis etwa 415 gegangen.

Für Lokomotiven mit Innenzylindern, für Lokomotiven mit drei Zylindern bei Kurbelwinkeln von 120° oder für Vierzylinder-Lokomotiven mit gegenläufigem Triebwerk dürfen die Drehzahlen um 10 % erhöht werden.

Der Durchmesser der Treibräder elektrischer Lokomotiven und elektrischer Triebwagen soll, wenn die Fahrzeuge Stangenanttieb haben, mindestens so groß gewählt werden, daß bei neuen Radreifen die Drehzahl 350 in der Minute bei der größten Fahrgeschwindigkeit nicht überschritten wird.

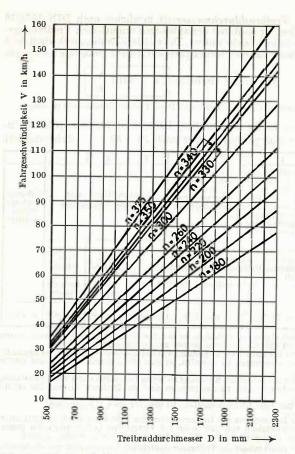


Bild 83. Treibraddurchmesser, Fahrgeschwindigkeit und minutliche Drehzahl n

Für D, V_{max} und V' von Vollbahnlokomotiven werden folgende Werte empfohlen:

Zahlentafel 22

Lokomotivgattung	Treibrad-	Höchst-	Günstigste
	durchmesser	geschw.	Geschw.
	D	V _{max}	V'
	mm	km/h	km/h
Schnellfahr-Lokomotive Schnellzug-Lokomotive Personenzug-Lokomotive Eilgüterzug-Lokomotive Güterzug-Lokomotive Lokomotive für Nahgüterzüge und Verschiebedienst Verschiebe-Lokomotive	2300 2000 1750 1600 1400 1400	180 130 110 90 80 70 50	120÷160 100÷120 80÷100 70÷80 60÷70 40÷60 30÷40

Der "günstigste" mittlere Kolbendruck $P_{\mathbf{m}'}$ in atü beträgt in Anlehnung an Strahl

Zahlentafel 23

für Kesseldruck atü	12	13	14	15	16	17	18	19	20	21	22	23	24	25
bei einfacher Dampfdehnung	3,6	3,7	3,82	3,92	4,03	4,15	4,25	4,35	4,48	4,58	4,69	4,8	4,9	4,95
bei Verbund- wirkung	3,4	3,5	3,6	3,71	3,81	3,92	4,03	4,13	4,23	4,35	4.43	4.52	4,63	4,75

Die zugehörigen Füllungen liegen nach Strahl zwischen 20 und 30 %, als Drehzahlen können $3 \div 4 \frac{1}{2}$ je Sek. vorausgesetzt werden.

Obige Pm'-Werte tragen der Tatsache Rechnung, daß die Zylinderverluste

- a) oberhalb V' mit wachsender Drehzahl zunehmen, da bei kleinen und kleinsten Füllungen der Eintrittsdampf stark gedrosselt wird
- b) unterhalb V' mit abnehmender Drehzahl wachsen, da bei mittleren und großen Füllungen die Expansion des Dampfes unvollständig ist.

Neuere Versuche haben gezeigt, daß der Einfluß dieser beiden Verlustquellen geringer ist als ursprünglich angenommen (siehe die Berichtigung der Strahlschen Kurve auf S. 102). Das trifft hauptsächlich auf die Einströmdrosselung

Als sehr schädlich hat sich hingegen die Drosselung des Dampfes in den Auströmwegen herausgestellt, auf die die Leistungskurve recht empfindlich reagiert. Sehr ungünstig wirkt die Gegendruckbremse in ihrer üblichen Form. (Auf die durch sie bedingte Erhöhung des Dampfverbrauches wird auf Bild 87 hingewiesen). Je nach der Vollkommenheit, mit der eine "strömungsgünstige" Ausbildung der Ausströmwege erzielt wird, zeigt sich eine mehr oder weniger starke Hebung des bei Strahl abfallenden Zweiges der Ni-Kurve. Damit verlagert sich der Leistungsscheitel, V rückt weiter hinaus. Vielfach fälle bei ausgeführten Lokomotiven V mit $V_{\rm max}$ zusammen. Die Leistungskurve zeigt dann keinen Abfall, $p_{\rm mi}$ sinkt entsprechend der höheren Drehzahl (vergl. Bild 87 auf S. 141).

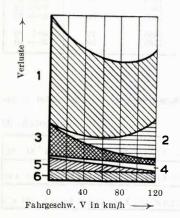


Bild 84. Zylinderverluste nach Meineke-Röhrs 1949, S. 69.

Fiäche 1 Flächenschaden

, 2 Drosselverluste

3 Verluste durch unvoliständige Expansion Fläche 4 Verluste durch äußere Abkühlung

5 Lässigkeits-Verluste

6 Raumschaden

Der **Zylinder durchnesserd**, der sich nach obigen Darlegungen über V' bzw. p_m' ergibt, darf grundsätzlich noch nicht als endyültig angesehen werden. Vorerst müssen vielmehr die Reibungszugkraft Z_Γ und das Reibungszewicht Grentsprechend den auf S. 59/63 erläuterten Angaben zu einander abgestimmt sein. Gegebenenfalls erfordert dies eine nachträgliche Berichtigung des d-Wertes.

Das Strahlsche Verfahren stellt die Forderung nach bester Dampfwirtschaft in den Vordergrund, es berücksichtigt aber nicht die Ansprüche des Lokomotivbetriebes auf zweckentsprechende Reibungszugkraft und auf möglichst großen Zugkraftbereich¹). Die Ergebnisse, die nach Strahl erzielt werden, setzen daher einen verhältnismäßig weiten Toleranzbereich voraus.

Zu genaueren Werten führt folgender Gedankengang:

Der Eisenbahnbetrieb verlangt von der Lokomotive neben guter Dampfwirtschaft eine zweckentsprechende Anpassung an die Reibungsgrenze und einen möglichst großen Zugkraftbereich. Diese drei Bedingungen sind erfahrungsgemäß erfüllt, wenn

- a) die höchste Fahrgeschwindigkeit unter Vollast noch mit Füllungen erreicht werden kann, die einen ruhigen Lauf der Lokomotive gewährleisten, das sind 25:-30 %. Hierbei wird die höchste Fahrgeschwindigkeit zumeist mit der "günstigsten" zusammenfallen. Bei geringerer Leistung (Teillast) werden diese Füllungen beibehalten, und es wird mit gedrosseltem Dampf gefahren.
- b) an der üblichen Reibungsgrenze (d. h. bei $\mu \sim 1/5$) Füllungen von $40\div50$ % eingestellt werden. Vergrößert man die Füllung über diese Werte hinaus, so läßt sich die Reibungszugkraft bis zu der durch Zimax bzw. μ_{\max} gegebenen Grenze erhöhen (siehe S. 60/61).

Diese Gedankengänge weisen den Weg zu Zylinderabmessungen, die den verschiedenartigen Forderungen gut entsprechen.

Für Lokomotiven mit einfacher Dampfdehnung gibt Zahlentafel 24, S. 138, zweckentsprechende Anhaltswerte zur Ermittlung des Zylinderdurchmessers.

Sie beruht auf den Erfahrungen des praktischen Betriebes und steht im Einklang mit den Ergebnissen neuerer Versuche.

Die Zahlentafel gibt zugleich einen Überblick über den zweckmäßigen Verwendungsbereich der Lokomotive. Kennzeichnende Abweichungen vom günstigen Bereich sind auf Bild 85 erläutert.

 $\frac{Z_{\text{max}}}{Z_{\text{min}}} = \frac{p_{\text{mr}}}{p_{\text{m}}}$ gekennzeichnet werden kann.

 $P_{mr} = mittl$. Kolbendruck an der Reibungsgrenze. $P_{mr}'' = mittl$. Kolbendruck bei Höchstgeschwindigkeit.

¹⁾ Die größtmögliche Zugkraft (an der Reibungsgrenze!) und die kleinste Zugkraft (bei Höchstgeschwindigkeit!) umschließen den Zugkraftbereich, der durch das Verhältnis

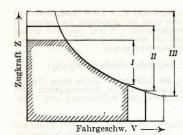


Bild 85. Zugkraftbereiche

festgelegt durch Reibungsgewicht, Höchstgeschwindigkeit und Kesselleistung, die für den Entwurf einer Lokomotive zumelst vorgeschrieben, bei vorhandenen Typen gegeben sind.

///////// I. Zugkraftbereich zu klein, ergibt sich

a) bel begrenzter Höchstgeschwindigkeit

oder b) bel zu kleinem Reibungsgewicht im Verhältnls zur Höchstgeschwindlgkeit und Kesselleistung

II. Anzustrebender Normalfall. Zugkraftbereich etwa 2,7-3,0

III. Zugkraftbereich zu groß (bis etwa 4), erfordert sorgfältige Bemessung von Zylinder, Steuerung u. schädlichem Raum, ergibt sich

a) bei überhöhter Höchstgeschwindigkeit

oder b) bel im Verhältnis zu Höchstgeschwindigkeit und Kesselleistung sehr großem Reibungsgewicht

Zugkraftbereiche und mittlere Kolbendriicke für Lokomotiven mit einfacher Dampfdehnung Zahlentafel 24

" = α"p	" "	Füllung	p_{m_r}			kraft-	3)
tu	e α"p α"	ε"%	$ \begin{array}{c} \operatorname{Im}_{\mathbf{r}} \\ = \alpha_{\mathbf{r}} P \\ \text{atii} \end{array} $	ar	Füllung $\epsilon_{{f r}}\%$	bereich	C_2 $= \mu/P_{\mathbf{m_r}}$
3.0	3.0 0.214 3.4 0.212 3.8 0.211	5	8,7 9,6 10,5	0.65 0.621 0.6 0.583	etwa 52 48 45,5 44	3.0 2.9 2.82 2.76	25.6 23 20.8 19 17.5
	3		8 0.211	8 0,211 10,5	8 0.211 10,5 0.583	8 0,211 . 10,5 0,583 44	8 0,211 . 10,5 0,583 44 2,76

1) Vorausgesetzt wird, daß die "günstlgste" Geschwindigkeit mit der Höchstgeschwindigkeit zusammenfällt. Die diesen Fahrzustand kennzeichnenden Größen sind hier mit Doppelbeistrich (") versehen.

²) Vorausgesetzt ist eine Reibungszugkraft $Z_{\Gamma} = \frac{1}{\delta} G_{\Gamma}$ (bel Tenderlokomotiven Mittelwert von G_{Γ} mit etwa $\frac{2}{3}$ der Vorräte einsetzen!)

3) $C_2 = \frac{C_1}{Gr} = \frac{\mu}{D_{mr}}$ Garbesche Reibungscharakteristik

Im praktischen Betrieb stimmt der Zugkraftbereich mit den in Zahlentafel 24 genannten günstigsten Werten häufig nicht überein, da Reibungsgewicht, Leistung und Höchstgeschwindigkeit noch anderweitigen Bedingungen unterliegen.

Es ist dann der tabellarische p_m -Bereich dem vorgesehenen Zugkraftbereich entsprechend so zu vergrößern bzw. zu verkleinern, daß beide Grenzwerte p_{m_r} und p_m " sich in etwa gleichem Verhältnis ändern. Richtwerte gibt untenstehendes Bild.

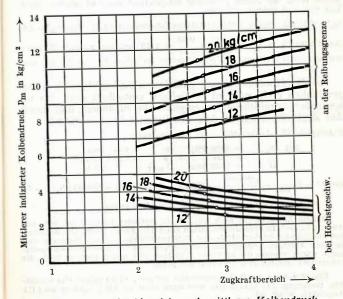


Bild 86. Zugkraftbereich und mittlerer Kolbendruck bei verschiedenen Kesseldrücken

1. Beispiel: 1 C1-Personenzug-Lokomotive Reihe 23 der Deutschen Bundesbah n

 $Z_{\Gamma}~=~54\cdot200~=~10800~kg~f\"{u}r~\mu~=~1/_{5}$ Damit ergibt sich ein Zugkraftbereich $\frac{p_{m_{\Gamma}}}{p_{m'}'}=\frac{10800}{4050}~=~2,66~\textit{(kleiner als}$

Tabellenwert 2,82!) Es ist daher $p_{m'}$ gegenüber dem Tabellenwert etwas zu vergrößern, p_{m_l} etwas zu verkleinern, und zwar so, daß das Verhältnis der beiden Werte der obigen Forderung entsprechend mit 2,66 erhalten bleibt. Man wird also rechnen mit etwa

$${\rm P_m}''=3{,}51~{\rm at}...~{\rm P_{m_\Gamma}}=~9{,}35~{\rm at}...~{\rm (statt~des~Tabellenwertes~9,6)}...~{\rm P_{m_\Gamma}/P_m}''=2{,}66$$

Somit wird
$$C_1 = \frac{d^2s}{D} = \frac{10800}{9.35} = \frac{4050}{3.51} = 1153$$
 und der gesuchte Zylinderdurchmesser d = 553 mm. Ausgeführt wurde die Lokomotive mit d = 550 mm.

Ist die Abweichung vom günstigsten Zugkraftbereich außergewöhnlich groß, so wird es vielfach vorteilhaft sein, das ursprünglich vorgesehene Reibungsgewicht zu ändern und damit den Zugkraftbereich an den Tabellenwert heranzubringen:

2. Beispiel: 2 D 1-Lokomotive, 1000 mm Spurweite

also Z'' = Z_{\rm Wmax} =
$$\frac{1400\cdot 270}{70}$$
 = 5400 kg . . Zr = 54.200 = 10800 kg bei μ = 1/5

Folglich: Zugkraftbereich
$$\frac{10800}{5400} = 2.0$$
, (zu klein!)

Obigem Z_T entspricht nach Bild 86 ein mittlerer Kolbendruck von nur etwa 7,2 kg/cm². Er liegt also wesentlich unter dem Tabellenwert. Das bedeutet, daß die Zylinder im Verhältnis zum Reibungsgewicht reichlich bemessen sind und beim Anfahren Neigung zum Schleudern besteht. Bei höheren Geschwindigkeiten wären dagegen die mittleren Zylinderdrücke immer noch zu hoch, die Lokomotive arbeitet nicht wirtschaftlich genug.

Eine Erhöhung des Reibungsgewichtes auf etwa 67,5 t bringt eine wesentliche Besserung. Die Lokomotive wird dann nicht als 2D1, sondern als 1E1 ausgeführt. Somit ist

$$\begin{array}{l} Z_r = 67,5 \cdot 200 = 13500 \text{ kg, also } 25 \text{ \% h\"o}her \text{ als urspr\'unglich vorgesehen.} \\ Zugkraftbereich & \frac{13500}{5400} = 2,5 \dots & \frac{p_m \cdot Bereich \text{ etwa } 3,14 - 7,85 \text{ kg/cm}^2}{\text{Zylinderdurchmesser d}} = 590 \text{ mm.} \end{array}$$

In anderen Fällen empfiehlt sich eine Änderung der ursprünglich vorgesehenen Höchstgeschwindigkeit, die u. U. eine Änderung des Treibraddurchmessers zur Folge hat:

3. Beispiel: 1 E1-Lokomotive, 1000 mm Spurweite mit Ni = 1830 PSi,

$$G_{\Gamma}=75.4~t,~D=1220~mm,~p=14~kg/cm^2,~V_{max}=60~km/h$$
 Dann $Z''=Z_{\mbox{V}_{max}}=\frac{1830\cdot270}{60}=8240~kg,$ also $Z_{\Gamma}=75.4\cdot200=15080~kg$ bei $\mu=^{1}/_{5}$

Folglich Zugkraftbereich $\frac{15080}{8240} = 1.83$, (zu klein!) Zwecks Vergrößerung des Zugkraftbereiches empfiehlt es sich, die Höchstgeschwindigkeit auf etwa 80 km/h zu steigern. Dann ergibt sich dieser zu $\frac{15080}{6180} = 2.44$. Die Erhöhung der Fahrgeschwindigkeit bedingt einen größeren Treibraddurchmesser von etwa 1400 mm. Der Verwendungsbereich der Lokomotive wird hierdurch erweitert.

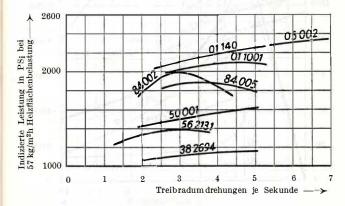


Bild 87. Indizierte Leistungen und günstigste Geschwindigkeiten einiger Lokomotiven nach Reichsbahnversuchen 1930 -:- 1943

Bei ausreichend bemessenen Schiebern und guter Dampfführung steigt die Leistungskurve stetig an, andernfalls ausgeprägte Scheitelbildung. Ungünstiger Einfluß der Drillinganordnung bei Lok 011001, die *unter* der Zwillinglok 01140 liegt. Lok 84002 mit 20 atű Kesseldruck erreicht höhere Leistung als 84005 mit 16 atű, zeigt aber stärkeren Leistungsabfall, (da Gegendruckbremse).

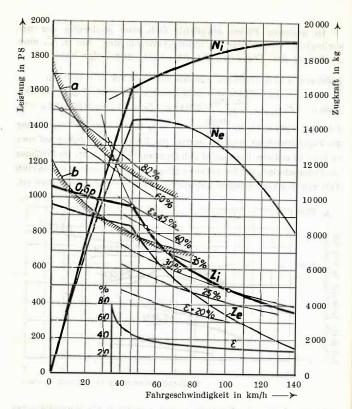


Bild 88. Kennlinien einer Heißdampf-Zwilling-Lokomotive am Beispiel der Baureihe 03 der Deutschen Bundesbahn

 $N_i=$ indizierte Leistung $N_e=$ effektive Leistung (am Tender-Zughaken) $Z_1=$ indizierte Zugkraft $Z_e=$ effektive Zugkraft (am Tender-Zughaken) $\epsilon=$ Zylinderfüllung in % 0,6 p=mittlerer Kolbendruck für den Mittelwert der Reibungszugkraft

0,6 p = mittlerer Kolbendruck für den Mittelwert der Reibungszugkraft Linie a bzw. b = physikalische Reibungsgrenze bei trockenen bzw. schlüpfrigen Schienen

Verbundlokomotiven

werden fast nur noch als Vierzylinder-Lokomotiven ausgeführt. Vereinzelt sind Dreizylinder-Verbund-Lokomotiven mit 1 Hochdruck- und 2 Niederdruck-Zylindern gebaut worden.

Die Zweizylinder-Verbundlokomotive hat heute lediglich geschichtliche Bedeutung (ungleiche Triebwerk-Gewichte, Schwierigkeiten beim Anfahren).

Die Verbund-Lokomotive zeigt sich vornehmlich im Gebiet der größeren Zugkräfte bei mittleren Geschwindigkeiten überlegen, sofern ihre Kesselleistung voll ausgenutzt wird. Dampfersparnis dann im Mittel etwa 4%, zum Teil allerdings durch höhere Beschaftungs- und Unterhaltungskosten aufgewogen. Bei Teillast ist die Wirtschaftlichkeit fraglich. Bei besonders sorgfältiger Durchbildung der Steuerung und der Strömungswege des Dampfes läßt sich die Überlegenheit der Verbund-Lokomotive über dem ganzen Geschwindigkeitsbereich aufrechterhalten und gegenüber guten Zwillingslokomotiven eine Dampfersparnis von etwa 10% erzielen. Heißdampf-Verbund-Lokomotiven sind nur von etwa 800 PS an wirtschaftlich.

Der Nutzen der Verbundwirkung erklärt sich aus

der Unterteilung des Temperaturgefälles im Zylinder, daher geringere Zylinderverluste (insbesondere geringere Niederschlagsverluste)

der Verringerung der Druckunterschiede an Kolben und Schiebern, daher geringere Undichtigkeitsverluste. Der im Hochdruck-Zylinder durch Undichtigkeit verlorengehende Dampf wird überdies im Niederdruckzylinder noch ausgenutzt

der Unterteilung des Druckgefälles, daher Verringerung der Verluste, die durch den schädlichen Raum bedingt sind

der vollkommeneren Dehnung des Dampfes, da die höchste Füllung im Hochdruckzylinder begrenzt ist (Verbundlokomotive als Anwendungsfall des Limited eut off anzusehen. Vergl. S. 223). Bei zu weit getriebener Dehnung, also zu kleinen mittleren Kolbendrücken, können allerdings die größeren Wandungsverluste diesen Gewinn wieder zunichte machen.

Das Zylinder-Raumverhältnis hat auf die Wirtschaftlichkeit der Lokomotive nur geringen Einfluß.

Übliche Werte $V_{\rm ND}/V_{\rm HD}=2,1\div2,6$ (bei Zweizylinder-Verbund etwa 2,8—3,0, da dann gleiche Arbeitsverteilung auf beide Zylinder).

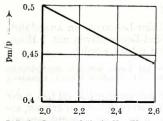


Bild 89

Mittlerer Kolbendruck von Verbundlokomotiven bei 65:-70 % Füllung im Hochdruckzylinder

Zylinder-Raumverhältnis V_{ND}/V_{HD} →>

Je kleiner V_{ND}/V_{HD}, um so größer die erzielbare Höchstfüllung und damit die größtmögliche Zugkraft. Die kleineren Raumverhältnisse (etwa 2,1-:-2,25) kommen demnach für Lokomotiven in Betracht, bei denen eine möglichst hohe Reibungs-Zugkraft ausgeübt werden soll (z. B. Steilrampen-Lokomotiven). Ist die Kesselleistung im Verhältnis zum Reibungsgewicht reichlich (Schnellzug-Lokomotiven), so sind Raumverhältnisse von etwa 2,4-:-2.6 zweckmäßig.

Welche mittleren Kolbendrücke bei dem jeweiligen Zylinder-Raumverhältnis erreicht werden können, zeigt Bild 89.

Die Gesamtleistung ist lediglich von der Größe des Niederdruck-Zylinders abhängig. Der Hochdruck-Zylinder beeinflußt dagegen die Verteilung der Arbeit auf die Kurbeln und die obere Grenze der Zugkraft.

Bei Vier-Zylinder-Verbund-Lokomotiven ist gleiche Leistungsverteilung auf dana uf geachtet werden, daß der Leistungsanteil der Niederdruckzlylinder nicht unbedingt erforderlich, jedoch muß dana uf geachtet werden, daß der Leistungsanteil der Niederdruckzylinder nicht zu klein wird. Die Niederdruckfüllung ist daher gegenüber der Hochdruckfüllung unr soweit zu vergrößern, wie es zum Erzielen guter Hochdruck-Diagramme erforderlich ist. Eine konstante Niederdruckfüllung von etwa 70% gibt zwar einwandfreie Hochdruckdagramme, jedoch wird der Verbinderdruck geringer und der Leistungsanteil der Niederdruck-Zylinder zu klein. Bewährte Füllungsverhältnisse sind 25/35, 30/38, 35/40, 40/45, darüber hinaus gleiche Füllungen im Hoch- und Niederdruckzylinder. Die Form der Dampfdiagramme läßt sich günstig beeinflussen, wenn man dem HD-Zylinder einen größeren schädlichen Raum gibt als dem ND-Zylinder. Vielfach ausgeführte Werte sind 20-24 % für die HD-Zylinder und 15--17.5 % für die ND-Zylinder.

Dreizylinder-Verbund-Lokomotiven erfordern gleiche Leistungsverteilung auf die 3 Zylinder, damit die Spitzen des Tangential-Druckdiagrammes nicht zu ungleichförmig werden, es entfällt also nur ¹/₃ der Gesamtleistung auf den Hochdruckzylinder. Der Verbinderdruck ist daher bedeutend größer als bei 4-Zyl.-Lokomotiven, und die Füllung im ND-Zylinder kleiner als im HD-Zyl.

Für die Bemessung der Zylinderdurchmesser der Verbundlokomotive gelten sinngemäß die gleichen Überlegungen wie bei einfacher Dampfdehnung. Die größte Zugkraft ist jedoch durch den Inhalt der Hochdruckzylinder begrenzt. Es lassen sich mittlere Zylinderdrücke von höchstens $(0,45\div0,5)$ p erzielen. Hierzu sind Hochdruckfüllungen von $65\div70$ % erforderlich. Man wird daher die Zylinder so bemessen, daß mit diesen Hochdruckfüllungen das Reibungsgewicht mit $\mu \sim 1/5$ ausgenutzt ist.

Bei Höchstgeschwindigkeit und voller Kesselanstrengung soll der mittlere Druck etwa $(0.17 \div 0.19)$ p betragen. Kleinere Drücke ergeben meist eine Schleifenbildung in den Diagrammen der Hochdruckzylinder.

Der Zugkraftbereich ist — da ja theoretisch der mittlere Kolbendruck auf etwa 0,5 p beschränkt ist — bei Verbundanordnung kleiner als bei elnfacher Dehnung. Größere Werte als etwa 2,5 ergeben melst bei hohen Geschwindigkeiten zu kleine $\mathbf{P}_{\mathbf{m}}$ -Werte und damit erhöhten Dampfverbrauch.

Zwilling-Lokomotive
 Drilling-Lokomotive

a - b mittlere Zugkraft

Bild 90.

Zugkraft-Vergleich zwischen Zwilling- und Drilling-Lokomotive (Tangentialdruckdiagramm) für eine Treibrad-Umdrehung

Die Zylinderanordnung

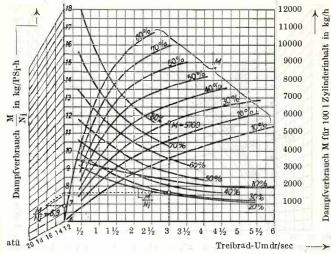
ist von wesentlichem Einfluß auf den Verlauf der am Radumfang ausgeübten Zugkraft und auf die Intensität der störenden Bewegungen.

Das Tangentialdruckdiagramm verläuft am ungleichförmigsten bei der Zweizylinder-Verbundlokomotive mit konstanter Füllung des Niederdruckzylinders. Es folgen mit fallendem Ungleichförmigkeitsgrad die Zwillinglokomotive mit um 90° versetzten Kurbeln; — die Vierzylinder-Lokomotive von v. Borries, bei der die beiden benachbarten Kurbeln einer Maschinenseite unter sich um 180°, zum Triebwerkspaar der gegenüberliegenden Maschinenseite um 90° versetzt sind; — die Drillinglokomotive und schließlich die Vierzylinder-Verbundlokomotive. Die gleichförmigste Zugkraftlinie ist mit einer Anordnung erreicht worden, bei der die Kurbeln derselben Maschinenseite zueinander um 135°, zu denen der anderen Seite um 45° versetzt sind.

Die Reibungszugkraft der *Drillinglokomotive* darf um etwa 8 % über derjenigen einer entsprechenden Zwillinglokomotive liegen (vergl. S. 61). Vielfach muß der Drilling-Ausführung aus räumlichen Gründen der Vorzug gegeben werden.

Die störenden Bewegungen sind um so geringer, je näher die Zylinder und damit die unausgeglichenen hin- und hergehenden Massen dem Schwerpunkt der abgefederten Massen sind.

Man unterscheidet folgende störende Bewegungen:


- 1. Regelmäßig wiederkehrende fortschreitende Bewegungen des Schwerpunktes
 - a) in Längsrichtung der Lokomotive: das Zucken
 - b) in senkrechter Richtung (Aufwärts- und Abwärtsbewegung): das Wogen
- 2. Regelmäßig wiederkehrende drehende Bewegungen des Schwerpunktes
 - a) um die durch den Schwerpunkt der abgefederten Massen gehende Längsachse der Lokomotive: das Wanken
 - b) um die durch den Schwerpunkt der abgefederten Massen gehende Querachse der Lokomotive: das Nicken
 - c) um die senkrechte Schwerachse der Lokomotive: das Drehen und das Schlingern.

Am Zucken, Drehen und Schlingern nimmt die ganze Lokomotive teil. Die übrigen störenden Bewegungen sind Schwingungen des abgefederten Teiles der Lokomotive.

Drillinglokomotiven mit um 120° versetzten Kurbeln zeigen keine Zuckbewegung, hingegen sind die Schlingermomente stärker als bei einer entsprechenden Zwillinglokomotive mit Außenzylindern. — Die Vierlinglokomotive von v. Borries mit zwei gegenläufigen Kurbeln auf jeder Maschinenseite zuckt nicht und schlingert weniger als die Drillinglokomotive mit um 120° versetzten Kurbeln oder als die Zwillinglokomotive mit Außenzylindern. — Lokomotiven mit doppelten, gegenläufigen Triebwerken zucken nicht, schlingern jedoch etwa ebenso stark wie entsprechende Zwillinglokomotiven mit Außenzylindern.

Vollständig aufgehoben sind die Zuck-und Schlingerbewegungen bei Lokomotiven mit Schlickschem Ausgleich (s. Garbe 1920, S. 105), bei Getriebe-lokomotiven (S. 247) treten sie praktisch nicht in Erscheinung, bei Turboantrieb (S. 247) entfallen die Ursachen dieser störenden Bewegungen. Die Zwillinglokomotive besitzt den Vorzug größter Einfachheit. Sie herrscht daher trotz ihrer lauftechnischen Nachteile vor.

Nur zum überschlägigen Nachprüfen!

Kesseldruck

Bild 91. Der stündliche spezifische **Dampfverbrauch** von Heißdampf-Zwillinglokomotiven in Abhängigkeit von Füllung, Drehzahl und Kesseldruck

Voraussetzungen: Heizflächenbelastung $50 \div 60~{\rm kg/m^2\text{-}h},~\dot{\mathbb{U}}$ berhitzung auf $350 \div 400^\circ$ C.

Kurvenschar M gibt den Dampfverbrauch in kg/hfür 100 l Inhalt je Zylinder einer Zwillinglokomotive an.

Kurvenschar $\frac{M}{N_1}$ gibt den Dampfverbra uch in kg je indizierte PS-Stunde an.

Die Leistung N_i bezieht sich auf 100 l Inhalt je Zylinder einer Zwillinglok.

Beispiel: Gegeben sind 3 Treibrad-Umdr/sec, 16 atü Kesseldruck und 30% Füllung. Es folgert hieraus ein stündlicher Dampfverbrauch

von M = 5700 kg je 100 l Zylinderinhaltund von $\frac{M}{N_1} = 6.9 \text{ kg je indizierte Pferdestärke.}$

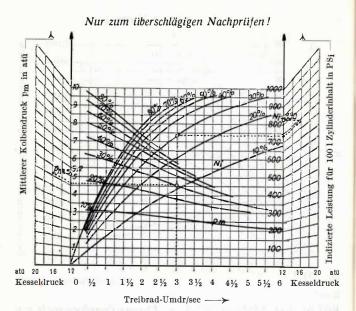


Bild 92. Indizierte spezifische **Leistung** und mittlerer **Kolbendruck** von Heißdampf-Zwillinglokomotiven in Abhängigkeit von Drehzahl und Füllung

Es ist N_i = indizierte Leistung für 100 l Inhalt je Zylinder einer Zwillinglokomotive

$${
m p_m} = rac{3}{160} \cdot rac{{
m N_i}}{{
m n}} = {
m mittlerer} \,\, {
m Kolbendruck} \,\, {
m in} \,\,$$
 atii

Voraussetzungen: Heizflächenbelastung 50 \div 60 kg/m²-h, Überhitzung auf 350—400° C.

Beispiel: Gegeben sind 3 Treibrad-Umdr/sec, 16 atű Kesseldruck und 30 % Füllung. Es folgern hieraus eine indizierte Leistung von $N_i=830~\mathrm{PS_i}$ je 100 l Zylinderinhalt und ein mittlerer Kolbendruck von $p_m=5,2$ atű.

Zur Gelenklokomotive

muß man übergehen, wenn die erforderliche Anzahl der gekuppelten Achsen größer ist, als sich in einem Hauptrahmen zweckmäßig vereinigen läßt. Eine Unterteilung des Hauptrahmens ist bei schnellfahrenden Lokomotiven üblich, wenn mehr als 4, bei verhältnismäßig langsam fahrenden Lokomotiven, wenn mehr als 6 gekuppelte Achsen vorgesehen werden müssen. Die Gelenklokomotive kommt den Forderungen günstigen Fahrzeuglaufes entgegen (siehe S. 68 u. f.).

Von Bedeutung sind folgende Bauarten:

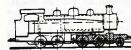


Bild 93

Die Mallet-Lokomotive

(s. Nr. 50, Zahlentafel S. 170 und

Nr. 59 u. 60, Zahlentafel S. 174)

kennzeichnet sich durch einen mit dem hinteren Teil des Kessels fest verbundenen Hauptrahmen, der nur bis etwa Kesselmitte nach vorn reicht, und durch ein Dampfdrehgestell, welches nach Art eines Bisselgestells vorn an den Hauptrahmen angelenkt ist. Das Vorderende des Kessels lagert auf Gleitflächen des Treibgestelles. Das Treibgestell neigt trotz Rückstellvorrichtung stark zum Schlingern, da seine zu bewegende Masse gering gegenüber den wechselnden Zylinderkräften ist. Die große Masse des frei vorstehenden Kesselendes bewirkt hohe Seitendrücke auf die festen Achsen des Hauptrahmens, es können daher für die Mallet-Lokomotive grundsätzlich nur verhültnismäßig geringe Fahrgeschwindigkeiten zugelassen werden. Der schwerste Mangel ist die ungünstige waagerechte Führung bei Rückwärtsfahrt. Die Nachteile treten um so weniger in Erscheinung, je größer die Lokomotiveinheit ist. In USA fahren gewisse Bauarten von Mallet-Lokomotiven mit Höchstgeschwindigkeiten bis etwa 125 km/h.

Die Mallet-Lokomotive ist die einzige zweiteilige Gelenk-Lokomotive. Alle anderen Gelenk-Bauarten weisen mindestens drei Hauptteile auf.

Die Mallet-Type wird als Tenderlokomotive wie als Lokomotive mit Schlepptender gebaut. Die leistungsfähigsten und schwersten Dampflokomotiven, die je gebaut wurden, sind Mallets.

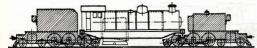


Bild 94

Die Garratt- bzw.

Beyer-GarrattLokomotive
(s. Nr. 51 ÷ 56 u.
58 ÷ 60, Zahlentafel S. 170)

ist für höchste Fahrgeschwindigkeiten geeignet und fährt in beiden Richtungen gleich gut. Sie besteht aus zwei die Vorräte tragenden Dampfdrehgestellen. die durch einen den Kessel und den Führerstand tragenden Kesselrahmen gelenkartig miteinander verbunden sind.

Der Stehkessel ist in seiner Gestaltung durch keinerlei Lauf- und Triebwerkteile beengt, kann vielmehr das volle Maß der Fahrzeugumgrenzung ausnutzen. Mit der Garratt-Bauart lassen sich somit unter Anwendung einfacher baullcher Mittel größte Kesselleistungen erzielen. Die große Lüngenentwicklung ist in solchen Fällen ein ausschlaggebender Vorteil, in denen in Rücksicht auf die zulässige Brückenbelastung ein geringes Metergewicht eingehalten werden muß.

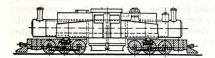
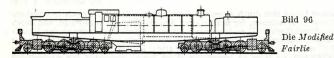



Bild 95

Die Fairlie-Lokomotive

kennzeichnet sich durch Doppelkessel und zwei Dampfdrehgestelle; die Vorräte sind beiderseits der Langkessel untergebracht. Fahrtechnisch ist sie ungünstiger als die Bauart Garratt, aber günstiger als die Bauart Mallet und entspricht etwa der Modified Fairlie (siehe Bild 96). Die Fairlie-Lokomotive kommt für neuzeitliche Ausführungen nicht in Betracht.

(s. Nr. 57, Zahlentafel S. 170)

ist fahrtechnisch günstiger als die Mallet. Sie besitzt einen durchgehenden Hauptrahmen, der den Kessel und den Führerstand, vor dem Kessel den Wasserbehälter. hinter dem Führerstand den Brennstoffbehälter und den Rest des Wasservorrats trägt. Das Ganze ruht auf 2 Dampfdrehgestellen, die zum Verringern des Schlingerns mit je einer Rückstellvorrichtung versehensind. Zwischen den Drehgestellen sitzt der Stehkessel; dieser kann — wie bei Garratt — das volle Umgrenzungsprofil ausnutzen. Es lassen sich also auch mit Modified Fairlie höchste Kesselleistungen unter Anwendung einfacher Mittel erzielen.— Modified Fairlie ist als Abart sowohl der Günther-Meyer- (siehe Bild 98) wie auch der oben dargestellten ursprünglichen Fairlie-Bauart anzusehen.

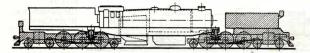


Bild 97. Die Garratt-Union-Lokomotive

Eine Vereinigung von Garratt und Modified Fairlie stellt die unter der Bezelchnung Garratt-Union bekanntgewordene Lokomotivbauart dar.

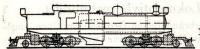


Bild 98

ie Günther-Meyer-Lokomotive

— heute zumeist in der Spielart Kitson-Meyer auftretend — unterscheidet sich von Modified Fairlie lediglich dadurch, daß die Vorräte hauptsächlich beiderseits des Kessels, keinesfalls vor dem Kessel angeordnet sind.

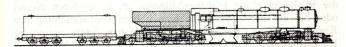


Bild 99. Die Henschel-Gelenklokomotive 1935

unterscheidet sich von einer Garratt durch konstante Belastung des vorderen Treibgestelles. Die Wasservorräte — die bei Garratt auf dem vorderen Treibgestell untergebracht sind — werden in einem besonderen Wasserwagen mitgeführt. Diese Maßnahme ermöglicht die Verwirklichung größter Kesselabmessungen und das Mitnehmen großer Wasservorräte.

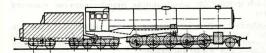


Bild 100. Die Henschel-Gelenklokomotive 1950

ist durch die Verwendung eines Jakobs-Drehgestells gekennzeichnet. Sie kann als Vereinigung der Bauart 1935 mit einer Schlepptenderlokomotive aufgefaßt werden. Der Tender ist organisch in das Laufwerk der Lokomotive einbezogen. Die Forderungen guter Fahrzeugführung im Gleis sind erfüllt, soweit dies bei Stangenantrieb möglich ist. (Weiterentwicklung unter Anwendung des Einzelachsantriebes nach Bild 188/89, S. 248.)

Bild 101

Die Golwé-Lokomotive

weist zwei Dampfgestelle auf, die dicht an den Stehkessel herangerückt sind. Das vordere Drehgestell sitzt unter dem Langkessel, das hintere Drehgestell trägt den Wasserbehälter, der den auf der Verlängerung des Kesselrahmens angeordneten Brennstoffbehälter U-förmig umfaßt.

Die amerikanische Lokomotivberechnung¹)

ist auf die in den USA gebräuchlichen Größtlokomotiven abgestellt. Die amerikanische Großlokomotive wird notwendigerweise mit kleineren Zylindern ausgerüstet, als sie in Rücksicht auf sparsamsten Dampfverbrauch zweckmäßig sind. Um die gleiche Zugkraft zu erhalten, die mit den "zweckmäßigsten" Zylindern erreicht wird, muß man mit höheren Füllungen fahren, die wiederum einen leistungsfähigeren, d. h. größeren Kessel oder bei gleicher Kesselgröße eine höhere Beanspruchung des Kessels bedingen. Die erforderliche Anfahrzugkraft zwingt zu Höchstfüllungen von etwa 90 % und - da diese Maßnahme meist noch nicht ausreicht - zum Einbau eines Boosters (s. S. 229). Aus dem Bestreben heraus, das sich aus den knappen Zylindern ergebende unwirtschaftliche Fahren mit hohen Füllungen bei höheren Geschwindigkeiten zu unterbinden, ist die Einrichtung des "limited cut-off" (s. S. 223) entstanden.

Der Übergang von der Zwilling- zur Drilling- oder Vierling-Bauart rückt die Grenze, oberhalb welcher die amerikanische Berechnungsweise einsetzen muß, weiter hinaus.

Von den amerikanischen Berechnungsarten ist am verbreitetsten die von Baldwin. Diejenige von Cole ist historisch verankert, durch die neuere Entwicklung des Lokomotivbaues aber überholt. Für Streckenlokomotiven wird vielfach das Verfahren von Kiesel angewendet.

I. Baldwin geht von der Höchstzugkraft am Radumfang aus. Diese ist bei einfacher Dampfdehnung

a)
$$T = \frac{0.85 P \times C^2 \times S}{D}$$

worin¹) T = Höchstzugkraft am Treibradumfang in lbs.

P = Kesseldruck in lbs. per square inch

C = Zylinderdurchmesser in inches

S = Kolbenhub in inches

152

D = Treibraddurchmesser in inches

Die Höchstzugkraft von Verbundlokomotiven ermittelt Baldwin

L" = Kolbenhub in feet

Pm = mittlerer Kolbendruck in lbs. per square inch

 Kolbenfläche eines Zylinders in square inches
 Anzahl der in 1 Minute von den Kolben durchlaufenen Hubwege (= 4 je Radumdrehung einer Zwillinglokomotive)

 $HP = \frac{T_m \times V}{375}$ oder zu g)

mit V = Stundengeschwindigkeit in miles $und \ T_m = zu \ P_m \ und \ V \ geh\"{o}rige \ Zugkraft \ am \ Treibradum fang \ in \ Pfund (lbs.)$

zu
$$T = \frac{S \times P}{D} \left(\frac{2}{3} C^2 + \frac{c^2}{4} \right)$$

$$zu T = \frac{C^2 \times S \times 0.6 P}{D}$$

d) bei Mallet-Vierzylinder-Verbund

zu
$$T = \frac{e^2 \times S \times 1.7 P}{(R+1) \times D}$$

Liegt das Zylinderraumverhältnis von Mallet-Lokomotiven zwischen 2,35 und 2,40, so wird Formel d) ersetzt durch

$$T = \frac{C^2 \times S \times 1,2 P}{D}$$

In obigen Formeln (b bis e) ist

C = Durchmesser des Hochdruckzylinders in inches

c = Durchmesser des Niederdruckzylinders in inches

R = Zylinderraumverhältnis.

Setzt man eine stiindliche Dampferzeugung von 12 lbs per square foot wasserberührter Verdampfungsheizfläche (= 58.6 kg/m²) und einen Dampfverbrauch der Naßdampflokomotive von 28, der Heißdampflokomotive von 21 lbs. per HP hour (= 12,6 bzw. 9,43 kg je PS-h am Radumfang) voraus, so ergeben sich die Schaulinien von Bild 102 und 103; diese stellen die Beziehungen zwischen Zugkraft, Fahrgeschwindigkeit und wasserberührter Verdampfungsheizfläche (enthalten im Wert T/H!) dar.

Die Leistungseinheit (1 HP) wird erfüllt, wenn 33 000 Pfund im Zeitraum einer Minute 1 Fuß hoch gehoben werden.

Somit ergibt sich die Leistung aus der Zylinderzugkraft zu

f)
$$ext{HP} = rac{ ext{Pm} imes ext{L} imes ext{A} imes ext{N}}{33000}$$

¹⁾ Siehe S. 304: Englische und amerikanische Maße.

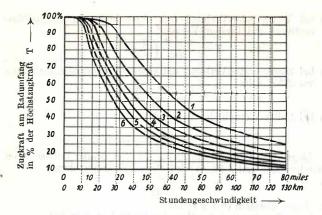


Bild 102. Zugkraft und Geschwindigkeit von Naßdampflokomotiven nach Baldwin

Voraussetzungen:

Stündliche Dampferzeugung = 12 lbs. per square foot wasserberührter Verdampfungsheizifi. (= 58,6 kg/m²) stündlicher Dampfverbrauch = 28 lbs. per HP (= 12,6 kg/PS) am Radumfang

Es gilt Schaulinie

1 für
$$\frac{T}{H} = 8$$
 bzw. $\frac{ZR_{max}}{H_{wb}} = 39$ 4 für $\frac{T}{H} = 14$ bzw. $\frac{ZR_{max}}{H_{wb}} = 68.5$

$$2 \text{ für } \frac{T}{H} = 10 \text{ bzw.} \frac{Z_{Rmax}}{H_{wb}} = 49 \qquad 5 \text{ für } \frac{T}{H} = 16 \text{ bzw.} \frac{Z_{Rmax}}{H_{wb}} = 78$$

3 für
$$\frac{T}{H}$$
 = 12 bzw. $\frac{Z_{R_{max}}}{H_{wb}}$ = 58.5 6 für $\frac{T}{H}$ = 18 bzw. $\frac{Z_{R_{max}}}{H_{wb}}$ = 88

Hierbei ist T = Höchstzugkraft am Treibradumfang in lbs. [gemäß Formel a) auf S. 152]

H = wasserberührte Verdampf ungsheizfläche in square feet $ZR_{max} = H\ddot{o}chstzugkraft$ am Treibradumfang in kg (mit 0,85 p)

Hwh = wasserberührte Verdampf ungsheizfläche in m²

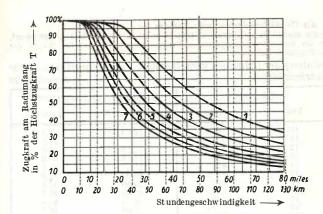


Bild 103. Zugkraft und Geschwindigkeit von **Heiß**dampflokomotiven nach Baldwin

Voraussetzungen:

Stündliche Dampferzeugung = 12 lbs. per square foot wasserberührter Verdampfungsheizh. (= 58,6 kg/m²) stündlicher Dampfverbrauch = 21 lbs. per HP (= 9.43 kg/PS) am Radumfang

Es gilt Schaulinie

1 für
$$\frac{T}{H} = 8$$
 bzw. $\frac{Z_{R_{max}}}{H_{wb}} = 39$ 4 für $\frac{T}{H} = 14$ bzw. $\frac{Z_{R_{max}}}{H_{wb}} = 68.5$

$$2 \text{ für } \frac{T}{H} = 10 \text{ bzw.} \frac{Z_{R\,max}}{H_{wb}} = 49 \qquad 5 \text{ für } \frac{T}{H} = 16 \text{ bzw.} \frac{Z_{R\,max}}{H_{wb}} = 78$$

$$3 \text{ für } \frac{T}{H} = 12 \text{ bzw. } \frac{Z_{R_{max}}}{H_{wb}} = 58.5 \quad 6 \text{ für } \frac{T}{H} = 18 \text{ bzw. } \frac{Z_{R_{max}}}{H_{wb}} = 88$$

7 für
$$\frac{T}{H} = 20$$
 bzw. $\frac{ZR_{\text{max}}}{H_{\text{wb}}} = 97.5$

Hierbei ist T = Höchstzugkraft am Treibradumfang in lbs. [gemäß Formel a) auf S. 152]

H = wasserberührte Verdampfungsheizfläche in square feet

Z_{Rmax} = Höchstzugkraft am Radumfang in kg (mit 0,85 p)

 $\mathbf{H}_{\mathrm{Wb}} = \mathit{wasser}$ berührte Verdampfungsheizfläche in $\mathbf{m^2}$

Als Heizstächenbelastung setzt Baldwin ein für die direkte wasserberührte Heizfläche 55 lbs. per square foot = 268 kg/m², für die indirekte wasserberührte Verdampfungsheizfläche die Werte der nachfolgenden Zahlentafel.

Belastung der indirekten wasserberührten Verdampfungsheizfläche (Rohrheizfläche)
Zahlentafel 25

Rohr	länge	Stündliche Dampfe	erzeugung
Fuß	mm	lbs. per square foot	kg/m ²
10	3 048	13,00	63,5
11	3 353	12,55	61,0
12	3 658	12,10	59,0
13	3 963	11,65	57,0
14	4 267	11,25	54,5
15	4 572	10.90	53,0
16	4 877	10.50	51,0
17	5 182	10,20	49,5
18	5 487	9.85	47.5
19	5 791	9,50	46,3
20	6 0 9 6	9,20	45.0
21	6 401	8.95	43,5
22	6 706	8,65	42,5
23	7 011	8,40	41.0
24	7 316	8,20	40.0

Der spezifische Dampfverbrauch ergibt sich aus Zahlentafel 26

Dampfverbrauch, bezogen auf die Stundenleistung am Radumfang Zahlentafel 26

Wassala	ll-	5	pezifischer	Damp fver bra uch	
Kesseld	iruck	Naßda	ım pf	Heißda	m pf
lbs. per sq. inch	atii	lbs. per HP per hour	kg/PS-h	lbs. per HP per hour	kg/PS-h
100	7,03	34,50	15,5	25,75	11,5
120	8.44	32,00	14.3	24,00	10,7
140	9,84	30,50	13,6	22,75	10,2
160	11,25	29,30	13,1	22,00-:-19,80	9.858.8
180	12,66	28,60	12.8	21.4519.20	9.6 ÷8.6
200	14,06	28,00	12,5	21,00-:-18,70	9.48.4
220	15,47	27,50	12,3	20,6518,30	9,3 ÷8,2
240	16,87	27,10	12,1	20,35 ÷ 18,10	9,1 -:-8,1
260	18,28	26,80	12,0	20,10 - 17,85	9,0 ÷8,0
285	20,04	26,50	11.8	19,90-:-17,75	8.9 7.9

II. Cole betrachtet die *Leistung* in Abhängigkeit von der Kolbengeschwindigkeit. Er setzt für Zwillinglokomotiven

h)
$$11P = \frac{(0.85 \text{ P} \times \text{f}) \times \text{e} \times 2 \text{ A}}{33000}$$

mit c = mittlere Kolbengeschwindigkeit in feet per min

P = Kesseldruck in lbs. per square inch

A = Kolbenfläche eines Zylinders in square inches

f = "Geschwindigkeitszahl", welche das Verhältnis der bei höchster Dauerleistung auftretenden Zugkraft T' zur Höchstzugkraft T angibt; sie entspricht mithin den Ordinaten der auf S. 154 und 155 dargestellten Kurven.

Die höchste Dauerleistung erreichen Naßdampflokomotiven bei 700 feet per min = 3,56 m/sec, Heißdampflokomotiven bei 1000 feet per min = 5,08 m/sec Kolbengeschwindigkeit. Die zugehörigen Geschwindigkeitszahlen sind f=0,412 für Naßdampf und f=0,445 für Heißdampf. Naßdampflokomotiven bleiben bei weiterer Erhöhung der Fahrgeschwindigkeit auf dieser höchsten Dauerleistung unverändert bis zu einer Kolbengeschwindigkeit von 1000 feet per min., bei der die Heißdampflokomotive ihren Höchstwert erreicht (siehe Bild 104).

Die Rostfläche bemißt Cole

i) für Naßdampf zu
$$\frac{\mathrm{HP} \times 4}{120} = \frac{\mathrm{HP}}{30}$$
 in square feet

k) für Heißdampf zu
$$\frac{HP \times 3,25}{120} = \frac{HP}{36,9}$$
 in square feet

wobei vorausgesetzt ist eine Rostbelastung 120 lbs. per square foot per hour = 586 kg/m^2 -h bei einem Heizwert von 14000 BTU $\sim 7800 \text{ kcal/kg}$, entsprechend einer Verdampfungsziffer 6,75.

Die wasserberührte Verdampfungsheizfläche

$$H = \frac{D_i \cdot HP}{b}$$

ergibt sich nach Cole aus den eindeutig festgelegten Zahlenwerten des spezifischen Dampfverbrauches

D_i = 27 lbs. perindicated HP-hour=12,2 kg/PS_i-h für Naßdampf, = 20,8 lbs. per indicated HP-hour= 9,4 kg/PS_i-h für Heißdampf und einer Belastung der wasserberührten Verdampfungsheizfläche von b = 13³/₈ lbs. per square foot per hour = 65,25 kg/m²-h.

Einem nach den Formeln i bis l bemessenen Kessel wird eine Kesselkapazität von 100 % zugesprochen. Lokomotiven mit kleinerem Kessel ist eine geringere Kesselkapazität zu eigen; bei ihnen ist die obere Leistungsgrenze durch die Leistungsfähigkeit des Kessels begrenzt, die eine (nach Coleschen Ansichten) volle Ausnutzung der Zylinderleistung nicht zuläßt. Ihre Leistungsschaulinie muß man im Verhältnis zur Kesselkapazität herabsetzen.

Die Colesche Kesselkapazität von 100 % wird fast nur von amerikanischen Größtlokomotiven erreicht. Alle anderen Lokomotivgatungen besitzen wohl ausnahmslos eine geringere Kesselkapazität, sind also mit größeren Zylindern versehen, als sie nach Cole zu dem ausgeführten Kessel gehören.

Cole's Annahmen — höchste Dauerleistung bei 1000 feet per min. Kolbengeschwindigkeit, 20,8 lbs. per indicated HP hour Dampfverbrauch treffen auf die modernen amerikanischen Heißdampflokomotiven nicht mehr zu (vergl. Zahlentafel S. 156 und Bild 106).

Ergänzende Betrachtungen zu den ursprünglichen Cole'sehen Formeln bringt Lipetz in "Railway Age" 1933/I, S. 243.

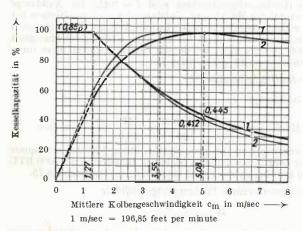
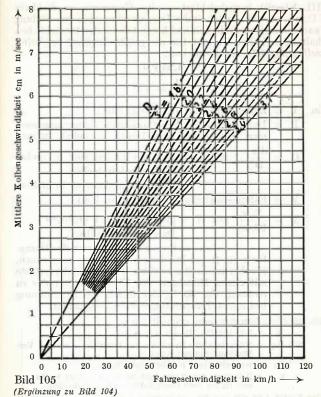



Bild 104. Zylinder-Leistung und -Zugkraft nach Cole Kurven 1 = Heißdampf; Kurven 2 = Naßdampf

Eine Tafel zum Umrechnen der Kolbengeschwindigkeit in die Fahrgeschwindigkeit findet sich auf nebenstehendem Bild, S. 159.

Kolbengeschwindigkeit und Fahrgeschwindigkeit

Fahrgeschwindigkeit
$$V = 1.8 \cdot c_m \frac{D\pi}{s}$$
 in km/h

mittlere Kolbengeschwindigkeit $c_{m} = \frac{V \cdot s}{1.8 D \pi}$ in m/sec

mit D = Treibraddurchmesser in mm und s = Kolbenhub in mm.

(Vgl. hierzu S. 132)

III. Kiesel¹) berücksichtigt — im Gegensatz zu Baldwin und Cole — die Abhängigkeit des Dampfverbrauches von Füllung wie auch Fahrgeschwindigkeit und kommt damit den tatsächlichen Verhältnissen nahe. Er gibt für die größte Zugkraft bei voller Kesselleistung folgende Formel an:

$$T = \frac{1,95 \text{ PM}}{\frac{M}{C} + V}$$

worin

T = Zylinderzugkraft in pounds (lbs.)

P = Dampfdruck im Schieberkasten (kann angenommen werden zu Kesseldruck abzüglich 10 lbs.)

 $C = \frac{d^2s}{D}$

mit d = Zylinderdurchmesser in inches

s = Kolbenhub in inches

D = Treibraddurchmesser in inches

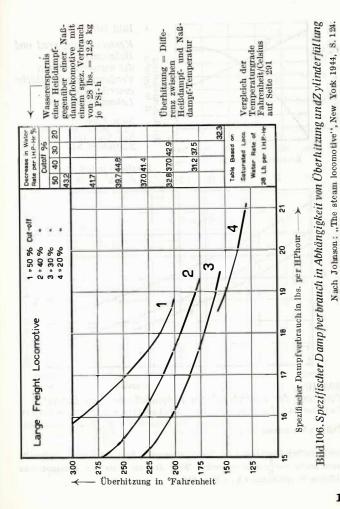
V = Fahrgeschwindigkeit in miles per hour

 $M = rac{W \, v}{36,66}$ mit W =größte stündlich erzeugte Dampfmenge in lbs.

v = Spezifisches Volumen des Dampfes in cu. ft. per lb., der Dampftafel zu entnehmen. Hierbei ist in Rücksicht auf die Zylinderverluste mit einem Mittelwert des Überhitzungsgrades zu rechnen, der 50 % der durch die Überhitzung bedingten Temperaturerhöhung entspricht.

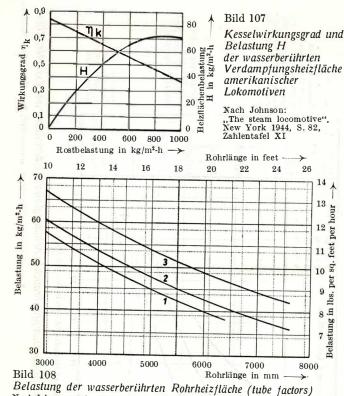
Die stündliche Dampferzeugung ermittelt sich zu

 $W = 0.9 \cdot 1.08 (55 \text{ Hb} + \text{bH}_{\text{r}})$ in lbs.


mit \mathbf{H}_b = wasserberührte Heizfläche der Feuerbüchse einschl. Verbrennungskammer in squ. ft.

Hr = wasserberührte Rohrheizfläche in squ. ft.

 Belastung der Rohrheizfläche (tube factor) in lbs. per squ. ft. per hour (nach Zahlentafel 25, Seite 156).


Der Faktor 1,08 gilt nur für Lokomotiven mit Speisewasservorwärmer oder Abdampfinjektor, der Faktor 0.9 berücksichtigt den Dampfverbrauch der Hilfsmaschinen und der Heizung (vergl. S. 103).

Die Kiesel'sche Formel gilt nicht für Fahrgeschwindigkeiten unter 20 miles per hour!

161

¹⁾ Nach Johnson: "The steam locomotive", New York 1944, S. 167.

Belastung der wasserberührten Rohrheizfläche (tube factors)
Nach Johnson: "The steam locomotive", New York 1944, S.95/97, Zahlentafel XIV
Üblicher Wassersteg 11/16". { Kurve 1 für Heizrohr von 2" Außendurchmesser
... 2 ... " 2'1/4" ...
... 3 ... " 5'1/2" ...
... 5'1/2" ...

Zur kritischen Beurteilung der Rohrabmessungen dient der Begriff "Hydraulic mean depth" ($=\frac{1}{K}$, d. h. reziproker Wert der im deutschen Lokomotivbau üblichen Rohrkennziffer K, s. Seite 111).

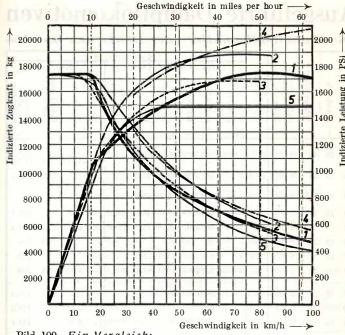


Bild 109. Ein Vergleich:
Leistung und Zugkraft der 2C1-Heiβdampf-Zwilling-SchnellzugLokomotive Klasse 16 DA der Südafrikanischen Staatsbahnen
(Betr. Klasse 16 DA siehe Nr. 12 der Zahlentafel S. 172).

- 1 nach Strahl
- 2 nach Cole (bei 100 % Kesselkapazität)
- 3 nach Cole (bei einer Kesselkapazität von 89 %, die nach den Erläuterungen von S. 158 der ausgeführten Kesselgröße etwa entspricht)
- 4 nach Kiesel
- 5 nach Baldwin

Ausgeführte Dampflokomotiven der Regelbauart

Die Einheitslokomotiven der Deutschen Bundes-

										Lok	omoti	V e			
		80			pr	Tr	ieb	- un	d Lau	f we	r k		K	essel	
Lfd Nr.	Achsdruck	Achsanordnung	Gattung*)	Refine ¹)	Erstes Baujahr	Zylinder Ø	Kolbenhub	Treibrad Ø	Laufrad Ø	Fester Achsstand	Gesamt- Achsstand	K esseldruck	Rostfläche	Feuerbüchs- heizfläche fb.	Verdamp- fungsheiz- fläche fb.
	t					mm	mm	mm	mm	mm	mm	atii	m²	m ²	2m
1	20	2C1	s	01	19273) (1950)	600	660	2000	1000/1250	4600	12 400	16	4,5 (4,31)	17 (21,8)	247 (216,4)
2	20	2 C 1	s	0110	1937	3 × 500	660	2000	1000/1250	4600	12 400	16	4,32	16,9	246,9
3	20	2 C 1	s	02	1925	$2\times\frac{460}{720}$	660	2000	850/1250	4600	12 400	16	4,5	17	247
4	18	2C1	S	03	1930	570	660	2000	1000/1250	4500	12 000	16	4,09	16,1	203,7
5	18	2C1	S	0310	1937	3×470	660	2000	1000/1250	4500	12 000	16	3,9	15,9	203,4
6	19	2C2	S	05	1934	3 × 450	660	2300	1100	5100	13900	207)	4,7	18,5	256
78)	19	2C2	S	03003	1937	3×450	660	2300	1100	5100	13825	207)	4,39	22,7	228
8	18/204)	2D2	s	06	1936	3 × 520	720	2000	1000	6750	14 525	207)	5,04	18,8	289
9	18	1C1	P	23	1940	550	660	1750	1000/1250	2050	10700	16	3,9	15,9	177,6
10	17/199)	1 C 1	P	23	1950	550	660	1750	1000/1250	2000	9 900	16	3,11	17,1	156,2
11	15	1C	P	24	1940	500	660	1500	850	1800	6 300	14	2,05	8,7	104,4
12	18/204)	1 D 1	G	41	1934	520	720	1600	1000/1250	3700	12050	207)	4,09	16,2	203,7
13	18	1 E	G	42	1943	630	660	1400	850	3300	9 200	16	4.7	19,3	199,6
14	20	1 E	G	43	1926	720	660	1400	850	3400	9650	14	4.7	18	237
15	20	1 E	G	44	1925	3 × 600	660	1400	850	3400	9 650	14	4,7	18	237
16	20	1 E	G	44	19363) (1950)	3 × 550	660	1400	850	3400	9 650	16	4,55	18 (21,3)	238 (196,3

S = Schnellzuglokomotive; P = Personen-zuglokomotive; G = Güterzuglokomotive; St = Schnellzugtenderlokomotive; Pt = Per-sonenzugtenderlokomotive; Gt = Güterzugtenderlokomotive. - Sämtl. Gattungenfür Regelspur (1435 mm). K = Schmalspurlokomotive

Typenskizzen auf Seite 382 u.f. Bilder auf Seite 359 und 391

balm und der Deutschen Reichsbahn Zahlentafel 27

1	okomo	tive		Vori	äte		Ten			e :-		42	er .
Kessel	Gew	icht	e				i	Ge w i	chte	set	- 111	kei	rün
Überhitzer- heizfläche außen	Reibungs- gewicht	Leergewicht	Dienst- gewicht	Wasser	Koble	Rad Ø	Gesamt- Achsstand	Leergewicht	Dienst- gewicht	Gesamt-Achsstd. von Lok u. Tender	Zugkraft 2) (0,75 p)	Größte Geschwindigkeit	Kleinster Krüm- mungshalbmesser
m²	t	t	t	m ³	t	mm	mm	t	t	mm	l·g	km/h	m
85,0 (95,0)	59,7	99,9	111,1	34	10	1000	5700	29,9	74,2	20 320	14250	130	140
86,0	59,0	101,6	111,8	38	10	1000	6000	33	81	20370	14800	140	140
85,0	60,3	103,9	111,1	30	10	1000	4750	28,5	68,5	19 250	13 700²)	130	140
72,2	54,3	91,0	100,3	34	10	1000	5700	29,9	74,2	20370	12800	130	140
72,2	55,2	92,8	101,2	34	10	1000	5700	29,9	74,2	20 225	13 100	140	140
90,0	57,6	118,5	129,9	37	10	1100	5900	38	85	22075	13 100	175	140
81.9	56,0	114,0	124,0	38.5	12	1100	6150	40,5	91	22275	13 100	175	140
132,5	72/804)	129,8	141,8	38	10	1000	6000	33,2	81,2	22450	21 900	140	140
64,1	53,9	80,1	88,3	26	8	1000	5700	25,5	59,5	19 015	13 650	110	140
73,8	50/565)	74,8	82,9	31	8	1000	5700	22,4	61,4	17 625	13 650	110	140
37,4	45,1	52,2	57,0	17	6	1000	3800	18,8	41,8	13 270	11 550	90	140
72,2	70/784)	92,6	101,9	34	10	1000	5700	29,9	74,2	20 175	18 250	90	140
75,8	85,5	88,2	96,6	30	10	970	5800	18,7	58,7	19 000	22500	80	140
100,0	96,6	100,9	110,8	32	10	1000	5700	33,5	75,5	19 190	25 600	70	140
100,0	99,4	103,7	114,1	32	10	1000	5700	33,5	75,5	19190	26700	70	140
100,0 (86,0)	95,0	99,9	109,8	34	10	1000	5700	29,9	74,2	19 190	25 650	80	140

³⁾ Klammerzahlen gelten für Umbau-Lokomotiven mit Verbrennungskammer

¹⁾ Zum Typenprogramm der Deutschen Bundesbahn gehören die Baureihen 23 neu, 41, 44, 45, 65, 66, 82 und 83

²⁾ Bei Verbundlokomotiven ist die mit (0,5 p) errechnete Zugkraft angegeben

⁴⁾ Kuppelachsdruck wahlweise 18 oder 20 t

⁵⁾ Kuppelachsdruck wahlweise 17 oder 19 t

⁶⁾ Mit zahnradgekuppelten Endachsen

⁷⁾ Später auf 16 kg/cm2 herabgesetzt

⁸⁾ Auf Rostfeuerung umgebaute Kohlen-staublokomotive mit Verbrennungskammer

⁹⁾ Entwurf

Die Einheitslokomotiven der Deutschen Bundes.

		200									moti	V e			
	HED	Bun			l d	Tr	ieb	- un	d Lau	fwe	rk		K	essel	BUILD.
Lfd. Nr.	Achsdruck	Achsanordnung	Gattung*)	Reihe ¹)	Erstes Baujahr	Zylinder Ø	Kolbenhub	Treibrad Ø	Laufrad Ø	Fester Achsetand	Gesamt- Achsstand	Kesseldruck	Rostfläche	Feuerbüchs- heizfläche fb.	Verdamp- fungsheiz- fläche fb.
	t		1	_		mm	mm	mm	mm	mm	mm	atü	m ²	m ²	m ²
17 18	18/204 15	1E1	G G	45 50	19403) (1950) 1939	3 × 520 600		1600 1400	1000/1250 850	5550 33 00	13 600 9 200	20 ⁷)	4,8 3,9	18.7 (23.2) 15.9	310.5 (269) 177.6
19	15	1E	G	52	1942	600	660	1400	850	3300	9 200	16	3,9	15,9	177.6
20	18	2C2	St	61	1934	460	750	2300	1100	5100	14350	207)	2,75	14,2	151,9
21	18	2C3	St	61	1939	3×390	660	2300	1100	5100	15025	207)	2,79	14,3	150
22	20	2C2	Pt	62	1928	600	660	1750	850	5000	13 300	14	3,5	15	195,3
23	15	1C1	Pt	64	1940	500	660	1500	850	_	9 000	14	2,05	8,7	104,4
24	17	1D2	Pt	65	1950	570	660	1500	850	3750	11975	14	2,66	14,8	140,2
25	15	1C29)	Pt	66	1952	470	660	1600	850	1850	10 450	16	1,95	11,9	87.9
26	15	1B1	Pt	71	1934	310	660	1500	850	3000	8 4 0 0	207)	1.37	5,5	67,5
27	17	C	Gt	80	1926	450	550	1100	_	3200	3 200	14	1,5	6,6	69,6
28	17	D	Gt	81	1927	500	550	1100	IIV02	4200	4 200	14	1,78	7,7	95,9
29	18	E	Gt	82	1950	600	660	1400		_	6 600	14	2,3	12,6	122,2
30	15	1D29)	Gt	83	1952	520	660	1400	850	3300	11575	16	2.3	12,6	122,2
31	18	1E1	Gt	84	1934	3×500	660	1400	850	-	11700	16	3,76	14,2	210
32	20	1E1	Gt	85	1932	3×600	660	1400	850	3400	12 500	14	3,5	15	195,3
33	15	1D1	Gt	86	1938	570	660	1400	850	1700	10 300	14	2,32	10	117,3
34	17	E	Gt	8 7 6)	1926	600		1100	-	3400	6 200	14	2,34	10	117,3
35	15	C	Gt	89	1934	420	-	1100	_	3300	3 300	14	1,42	6.1	82,2
36	15	C	Gt	89	1934	420	_	1100		3300	3 300	14	1,42	6,02	67.9
37		1E1	K	9973	1928	450	400			4000	7 600	14	1.75	6.7	80,3
38		1D1	K	9932	1932	380		1100	550	3975	8 075	14	1,62	5.8	60,5
39	10	1E1	K	9922	1932	500	500	1000	550	3600	8700	14	1.78	7,7	95,9

Fußnoten auf S. 164/165, - Lfd. Nr. 37/38/39 für 750/900/1000 mm Spur

bahn und der Deutschen Reichsbahn

	Lokom	otive	В	Vor	räte		Ter	der		er.		256	. 1
Kessel		wich					ľ	Gewi	chte	std		teit	üm
Überhitzer- heizfläche außen	Reibungs- gewicht	Leergewicht	Dienst- gewicht	Wasser	Kohle	Rad Ø	Gesamt- Achsstand	Leergewicht	Dienst- gewicht	Gesamt-Achsetd. von Lok u. Tender	Zugkraft ²) (0,75 p)	Größte Geschwindigkeit	Kleinster Krüm-
m ²	t	t	t	m3	t	mm	mm	t	t	mm	kg	km/h	m
120.6 120.0)	90,8/98,84)	114,7	126,7	38	10	1000	6000	33,2	81,2	21 775	27 500	90	140
64.1	75.3	78,6	86,8	26	8	1000	5700	25,5	59,5	18 890	20 200	80	140
63,7	75,7	75.9	84,0	30	10	970	5800	18,7	58.7	18890	20 200	80	140
69,2	56.7	100,5	129,1	17	5		_	-	-	- 1	10 350	175	180
69.2	56,3	112,9	146,3	21	6	-	-	-	-	-	9 800	175	180
72,5	60,8	97.9	123,6	14	4,3	-	_	-	_	_	14 250	100	140
37.4	45.7	58,5	75,2	9	3	-	-	_	-	_	11 550	90	140
62,9	68,0	81,0	108,0	14.3	4,8	-	-	-	12.1	_	15 000	85	140
43,8	45,0	65,0	90,0	14	5	-	_	_	_	-	10 950	90	140
28,6	29,9	45,4	58,6	7	3	<u> </u>	_	_		- 1	6750	90	140
25,5	54,4	44,3	54.4	5	2	-	-	_	-	_	10 600	45	140
34,0	67.5	52,0	67.5	8	3	_		-	_	_	13 100	45	140
51,9	91,6	69.7	91,6	11	4	_	_	_	P-440	-	17 800	70	140
51,9	60,0	74,0	102.7	16	5	-	_	-	-	-	15 300	80	140
85,0	91,3	100,5	125,5	13,7	3	_	-	-	-	- 1	21 200	80	8
72.5	99,7	107,5	133,6	14	4,5	-	-	_		-	26700	80	140
47.0	59.4	68,0	87.3	9	4	_	_	-	-	-	16100	80	140
47.0	85,6	68,0	85,6	9	3			_	_		18 900	45	100
00-	45,8	35,3	45,8	4,5	2,6	+	-	-	_	-	9 250	45	140
24.1	46,6	36,2	46,6	4,8	2,6	-	_	-	-	-	9 2 5 0	45	140
29,0	46.2	43,7	56,2	6	2,5	_	-	-	-	-	10 600	30	50
30,6	32,0	35,0	44,0	3	1,7	-	_	+	-	-	7 550	50	50
34,0	50,0	55,0	66,0	8	3	-	-		-	-	13100	40	50

				DEC -7 - 166	Т	riel	- un	d La	uf we	r k
Lfd. Nr.	B Spur	Größter Achsdruck	Achsanordnung	Eigentümer bzw. Bestimmungsland	g Zylinder Ø	Kolbenhub	Freibrad Ø	B Laufrad ∅	Fester Achstand	g Gesamt-
1	1524	15,4	1 A 1	Lettische Staatsbahn	320	520	1500	1050	3900	5700
2 3 4 5 6	1000 1435 1435 1067 1435	14,0 17,8 16,0 10,0 18,5	B B B1 1B1 1B1	Hohenlimburger Kleinb. 6) Stahlwerk in Frankreich. Bergedorf-Geesthacht Dell-Bahn (Sumatra) 1 °) Vormalige Lübeck- Büchener E. G. 6) Lettische Staatsbahn 6)	380 380 350 350 400 430	550 550 660	900 1000 1200 1300 1980 1720	900 760 1000 900	1500 2000 2200 4700 3000 2700	1 500 2 000 4 200 7 000 8 7 50 8 4 00
8 9 10 11 12 13 14 15 16 17 18 19 20	1435 1435 1524 1000 1067	12.8 15.9 16.7 5.0 7.8 10/11 13.0 14/16 16.3 16.8 16.7 10.1 12.1	C 1C C1 1C1 1C1 1C1 1C1 1C1 1C1 1C1 1C2 2C2	Zementfabrik Alsen Süddeutsche E. G. Hafenb. Kalkutta (Indien) Norwegische Staatsbahn Kleinbahn in Finnland¹). Vierfontain (Süd-Afrika)²) Swatow Chow-Chow (China) Sachsenwerk Mecklenb. Friedrich Wilhelms-Eisenbahn Halberstadt-Blanken- burger E. G. *) Lettische Staatsbahn³) å) Burma-Railway (Indien) Indonesische Staatsbahnen	420 480 406 260 390 381 450 480 520 530 480 381 485	610 400 430 508 610 550 630 660 630 559 600	860 1200 1168 824 900 991 1372 1200 1500 1400 1720 1092 1500	775	3500	2500 6000 5029 5430 6300 6600 7670 7600 9000 9500 7950 11100
21 22	1524	17,3 5,2	2C2 D	Finnische Staatsbahnen 2) Unterharzer Berg-	530	660	1830	1030	4800	12700
23 24 25 26 27 28	1000 1000 1000 1000 1435 600	6,2 11,0 14,5 14,6 20,0 6,7	D D D D D 1D	und Hüttenwerke. Tungpu Railway (China). Bayer-Werke Leverkusen') Brasilian. Nordwest-Bahn Sorocabana (Brasilien) 8). Dortmund-Hörde. Amboim Ry (Portug Westafrika) 1) Kreis Jerichow.	300 350 430 540 540 600 360 360	300 360 400 450 450 600 400 410	650 720 850 950 950 1200 800 850	550	1485 1800 1250 2700 2700 2860 2000 2200	2200 2700 3150 4000 4000 4290 4825 5200

^{*)} Bauart Hanomag

Eine Auslese bemerkenswerter Henschel-TENDER-Lokomotiven

100	Kess	el		Vor	räte	Gev	vicht	e	â	Ę.	ser	
Kesseldruck	Rostfläche	Verdampfgs neizfläche fb.	Überhitzerheiz- fläche außen	Wasser	Brennstoff	Reibungs- gewicht	Leergewicht	Dienst- gewicht	Zugkraft (0,75 p)	Größte Geschwindigkeit	Kleinster Krüm- mungshalbmesser	Kennziffer
atü	m ²	m ²	m ²	m³	t	t	t	t	kg	km/h	m	
14	1,25	51,2	21,8	3,3	1,7	15,4	30,0	37,2	3 720	75	180	21 994
15 16 16 12	0,8 1,34 1,25 1,43	27,1 67,9 48,5 58,7	13,0 20,5 28,7	2,7 4 5 4,6	0,6 1,1 2,1 2	28,0 35,5 32,0 20,0	23,0 27,5 34,0 29,7	28,0 35,5 43,0 38,8	7 250 8 650 6 740 4 700	15 45 60 70	20 40 80 145	22 737 28 600 23 280 H 24 001
16 15	1,4 1,91	75,4 97,4	26,0 34,4	9.3 8	3,5 2,5	36,5 34,1	52,5 52,1	69,0 68,0	6 400 7 620	120 105	140 180	22814 23 089
14 13 14,8 12 13 12 12 12 14/16	1,3 1,8 1,68 0,67 1,35 1,95 1,3 2,08	62,3 96,3 95,7 30,1 48,6 75,2 69,5 98,4	11,3 23,0 — 27,5	3 6 9,1 2,1 4 5 6,5 7	1,1 2 2,5 0,5 1,5 2 2,5 2,5	38,2 47,7 49,9 14,8 23,4 30/33 39,0 42/48	30,0 46,7 49,8 16,2 26,4 35,2 39,7 52,8	38,2 60,0 65,8 20,6 34,4 45,4 51,5 68,7	8 620 11 400 9 580 2 940 7 500 6 650 8 100	35 60 45 40 50 40 60 70	80 120 76 50 90 85 100 100	26477 23 877 28 594 28 463 23 876 28 392 21 849 24 75
14	1,89	103,5		9,3	3,5	48,8	59,5	77,0	11 950	80 75	140 140	22 91: H 35 00:
16 15 12,7 12 16	2,55 2,2 1,19 3,0 3,5	118,5 111,8 83,0 130,0 171,5	40,1 — 48,5	8 9 7 10 14	3 0,8 ³) 3 3 6	50,4 49,9 30,2 36,2 51,5	62,8 67,0 41,0 58,2 90,9	79,3 82,0 54,7 78,1 117,8	15 900 9 550 7 050 8 500 12 150	105 56 80 110	180 76 150 180	2308 21 63 18 15 26 13
15 12 14 14 14 14	0,7 0,93 1,35 2,01 2,0 3,1	68,8	7 — 3 — 0 35,0 0 35,0		0.4 0.7 1.5 4.2m ³ 1.5 2.7	20,6 24,7 42,5 58,0 58,3 80,0	19,3 32,1 46,6 46,8	24,7 42,5 58,0 58,3	14 500 14 500	15 25 30 40 40 45	24 35 15 80 80	2237 2710 2506 2294 2442
12 13	1,4	54,5 44,5		4 3,5	3 1,1	26,7 24,0	23,1 23,0	30,6 29,7		40 45	40 50	

⁴⁾ Lokomotive kann wahlweise auch mit Treibrädern von 1400 mm Ø versehen werden

5) Stromlinienlokomotive

¹⁾ Holzfeuerung

²⁾ Ölfeuerung

⁸⁾ Wahlweise Holz- oder Kohlenfeuerung

 ⁶⁾ Straßenbahnlokomotive
 7) Mit Zahnradantrieb der Endachsen

Fortsetzung von Eine Auslese bemerkenswerter Henschel-Zahlentafel 28:

			56	- NA - 1 M	Tr	ieb-	un	d La	nf w	erk
Lfd. Nr.	nds g	Größter Achsdruck	Achsanordnung	Eigentümer bzw. Bestimmungsland	g Zylinder Ø	Kolbenhub	F Treibrad	H Laufrad Ø	Hester	- 1
31 32 33 34 35 36 37	1435 1524 1000	10,0 12,2 16,0 18,0 15,0 14,8 18,0	D1 1D1 1D1 1D1 1D1 1D1 1D1 2D2 2D2	Mozambique (PortOstafr.) Mittelpommersche Kleinb. Portugiesische Nordbahn. Indonesische Staatsb.*) Prignitzer E. G. Halberstadt - Blankenbg.*) Finnische Staatsbahnen*) Minas del Rif (Marokko) Niederländische Eisenb.	390 450 485 570 640 570 520 4 × 420	430 600 600 660 600 650 540 660		500 750 774 850 850 960 720 930	5100 1700 3700 3600 5250	6 900 9 180 9 900 10300 10800 10 550 11 100
40 41 42 43 44 45	1000 1067	20,0 20,7 14,7 19,9	E E E E E 1E1 1E1	Deutsche Bundesbahn Südharz-Eisenbahn Quellmane (PortOstafr.) Georgsmarienhütte Roddergrube Finnische Staatsbahnen*) Ibbenbühren ¹⁴) Türkische Staatsbahnen	430 500 480 700 700 570 720 3×570	500 500 660 660 650 660	800 1000 1000 1300 1300 1270 1300 1400	1111		4600 4800 6200 6200
48	1435 1067 900	16,8 10.0	F 1F1 B B	Bulgarische Staatsb.*) Indonesische Staatsb.*) Grube Phönix (Thür.) 14)	$ \begin{array}{r} 1 \times \begin{array}{r} 620 \\ \hline 900 \\ \hline 4 \times 330 \end{array} $	510	1300 1102 800		_	7 225 1 025 0 1 0 1 0 0
51 52 53 54 55 56 57 58 59	1000 1067 1000 1067 1000	9,1 4,0 7,0 12,5 9,0 13,5 10,5 13,3 10,7 13,5	C C 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 1 C 1 2 C 1 1 C 2 2 C 1 1 C 2 2 C 1 1 C 2 2 C 1 1 C 2 2 C 1 1 C 2 2 D 1 1 D 1 2 D 1 1 D 2 2 D 1 1 D 2	Deutsche Reichsbahn ¹¹) Südafr. Staatsbahnen ⁹) *) Südafr. Staatsbahnen ⁹) *) La Robia (Spanlen) ⁹) *). Rio Grande do Sul ⁹) Südafr. Staatsbahnen ⁹) Siamesische Staatsb. ¹) *) Südafr. Staatsbahnen ⁹) Südafr. Staatsbahnen Klasse GO ¹⁰). Südafr. Staatsbahnen Klasse GM ¹⁰)	2 × 400 4 × 229 4 × 305 4 × 420 4 × 356 4 × 406 4 × 457 4 × 406 4 × 470 4 × 521	406 550 610 660 550 610 610	1070 1143 1372 1050 1156 1219	533 530 720 735 762 762 724 724 762/864	2500 1727 1905 2600 2896 3600 3887 2718	7000 12344 13030 20000 20080 21260 20000 21285 24105

TENDER-Lokomotiven

Typenskizze auf Seite 407 Bilder auf Seite 355, 364, 367, 371, 393, 394

	Кe	ssel		Vo	rräte	Ge	wich	te	13	ب	4 .	
E Kesseldruck	E Rostfläche	g Verdampfgs- ∞ heizfläche fb.	g Überbitzerheiz- näche außen	g Wasser	- Brennetoff	Reibungs-	- Leergewicht	Dienst- gewicht	g Zugkraft (0,75p) ¹³)	g Größte y Geschwindigkeit	Heinster Krüm- mungshalbmess.	Kennziffer
13	1,6	89.7	_	10	2,5	48.5	42,3	57,9	9870	80	35	28379
13	1,3		26.0	3	1,1	28,0	28,5	34,8	7 500	30	70	21 780
12	1,9		49,0	6,5	1,8	39,7	42.8	55,4	9 950	75	70	21 875
12	2,4	106.0	35.0	9	3	48,7	52.1	68.7	10950	45	150	H 4 641
14	2.34	117,3	47.0	9	3.5	64,0	68.0	86.0	16 100	70	140	22 909
16	3,12	145.0	55.0	9	3	72,0	83,3	102,0	23 600	60	140	H 46 023
12	2,11	122,0	38,0	7,5	4	59,0	70,3	86,0	11 900	80	180	H46015
14	3,2	190,4	_	12	3,2	59,0	68.0	91,0	14 500	45	80	23 278
14	3,16	167,2	54,0	14	4,5	72,0	101,6	126,4	15800	90	200	21 782
14	1,6	64,2	24.5	4.5	2	42.2	32.5	42.2	9 690	30	50	19 757
14	1.82	76.6	25,5	5	2	53,0	43,0	53,0	13100	40	60	20573
13	1,6	90,2		10	2,5	56,3	40.5	56,3	11 250	35	80	22075
14	3,6		64,8	10.5	3,5	100.0	79.0	100.0	26 125	45	140	25 221
14	3,72	166,3	61.1	10,5	4,3	103,5	82.7	103,5	26125	45	140	24 822
12	2.11		38,0	6	2.6	73.5	59,5	73,5	15 100	50	180	H 55 007
14	4,05	199,6	72.9	12	4	99,2	100,6	123,8	27 600	50	140	23 331
16	4,0	205,2		14.5	5	100,0	108,4	136.0	27 600	70	140	25 225
15	4,6	252,5	-	12	5	100.7	78,1	100.7	1630013)	50	120	H 6640
12	2,6	118,0	40,8	8,5	3	60,0	61,6	78,0	12200	45	150	H 6841
14	2,3	100.7	9,512)	6,8	2.5	58,8	44,8	58,8	12100	25	50	24 292
14	1,85	82,7	34,0	4,5	1,5	54,0	45,3	54,0	13 450 ¹³)	30	90	15 167
12.6	0.98	39.3	9,0	4,5	2	23.9	29.9	38.2	5 300	35	50	H 35 359
12,6	1.8	77.0	13.2	8.1	4	42,0	46.0	62,5	8 600	40	50	H 35 351
13	3,2	133,0	36,0	15	8	75,0	80.0	108,0	17700	50	90	H 35 357
14	4,0	114,6	44.5	11,1	7.2	54,0	78,0	102,2	14 200	65	70	22 047
13	4,1	189,0	52,0	18,2	10	80,2	108,2	143,1	15 500	80	90	21 053
13	4.3	167.5	54.0	18	5,4	83.1	90,7	121.3	1 18 900	50	150	23 109
12,7	4,93	192,0	67.5	20.9	9.2	106,0	115,8	154.9	21 000	50	90	20 700
14	4,53	180,5	34,4	19	6,0	85,6	116.7	149,7	17400	70	90	25 25
14	5,02	175,5	41,9	7,3 15) 14,2	107,	143,5	173,8	22 400	75	85	2870
14	5,94	233.2	68.8	10.9	15) 14,1	120	154.7	187,0	27 500	75	85	28 680

¹⁸⁾ Bei Verbundlok. Zugkraft mit (0.5p) errechnet.

^{*)} Bauart Hanomag ²) Ölfeuerung ⁹) Bauart Garratt ¹¹) Bauart Mallet ¹) Holzfeuerung ⁸) Bauart Modified Fairlie ¹⁰) Bauart Beyer-Garratt ¹²) Dampftrockner

¹⁴⁾ Braunkohlenbrikettfeuerung

¹⁵⁾ Weiterer Wasservorrat auf besonderem Wasserwagen

Eine Auslese bemerkenswerter Henschol-

				149			L	okom	otiv	е	T	
ı	1		Jug		T	rieb	- un	l Lau	fwer	k	K e	ssel
Lfd. Nr.	Spur	Größter Achsdruck	Achsanordnung	Elgentümer bzw. Bestimmungs- land	Zylinder Ø	Kolbenhub	Treibrad Ø	Laufrad Ø	Fester Achestand	Gesamt- Achsstand	Kesseldruck	Rostfläche
H			¥		N N	M	A	La	Fe	Ge	Ne M	R _O
_	mm	t			mm	mm	mm	mm	mm		atii	m ²
1 2 3	600 600 610	2,5	C C1 C1	Feldbahnlok. 4) Indonesien 8) N. V. Twentsche	300 220	350 300	700 650	450	1800 1700	1 800 2 900	13 12	0,73 0,85
4 5	1000 762		1C 1C1	(BritOstafrika) ²) . Tungpu-Bahn (China) Indische Nordwest-	270 400	300 500	630 1100		1600 2700		12,8 13	1,1 1,5
6	1067	11.6	1C1	Bahn*)	305	457	864	610	2020	5 982	11,3	1,3
7	891	7,7	2 C	(PortugOstafrika)?) Västergötland - Göte-	505	560	1350	800	3200	8 000	12	2,2
8 9 10	1000 10 (1) 1000 1000	5.0		borg (Schweden) Gondal Ry (Indien) . Meklong Ry (Siam) 2) Sjamesische Stb. *) 2)	370 381 34 1 3 × 382	500 559 4·10 610	1300 1448 11 10 1371	790 724 690 762	3300 1829 2600 2900	6109	12,6 12	1,15 1,39 1,83 2,65
12 13	1000 1067 1435	20,2 18,5	2C1 2C1	Staatsb.v.Indochina*) Südafr. Stb., Kl. 16 E. Deutsche Bundes- bahn (S 3/6)	500 610 440	550 711	1370 1829	762 864	2900 3746	8 450 10 236	12 14,8	2,65 5,8
	-			Dann (8 3/0)	2 × 650	010/0/0	1870	950/1206	3980	11190	16	4,5
14 15 16	610 1067 1000	6,0 18,0 10,0	D D	Philippinen ²) ⁴) Südafr. Staatsbahnen Peloponnes-Bahn	325 590	330 635	700 1219	Ξ	850 4496	4 496	13 15,1	٥,,
17 18 19 20	1067 1435 1435 610	17.1	1 D	(Griechenland) Indonesische Stb.*) 2) Ägyptische Staatsb. ³) Iranische Staatsb. ³) ⁹) Südafr. Staatsbahnen	500 485 470 560 400	550 510 711 720 450	1200 1106 1435 1450 860	830 777 1004 1000 533	2600 3500 5258 3200 1970		12 12 15,8 15	2,16 2,25 2,8 3,9 1,55
21 22	750 762	4.5 7.8	1D1 1D1 1D1	Paraguay ²) 6) Indische Nordwest-	280	360	720		2600		13	1,35
23 24	914 914	10,6 12,0	1D1 1D1	Bahn*)	406 457	457 560	864 1067		2972 3600			2,5
25 26	1000 1000	10,1 11,4	1D1 1D1	Burma Rys (Indien) . Parana Plantations	432 432	559 610	1016 1219	117	2233 4089	7 976 8 458		3,7 2,42
27 48	1000 1000	11,8 15,6	1D1 1D1	(Brasilien) ²⁾ Argentinische Stb. ⁵) Mogyana-Bahn (Brasilien) ²)	483 457 3 × 380		1220 1067	724 780 735	4200 3600		12	3,05 4,1
29	1435	16.3	1 D 1	Chekiang-Kiangsi			1150		3900	9 1 5 0		
30	1435	17,0	1D1	(China) Bulgarische Staats- bahnen (Reihe 01)10)	508 640 (3 × 500)	660 700	1372 1650	860/1000 850/1253	4710' 3800 1	9 600 11 500		4,0 4,8

^{*)} Bauart Hanomag

1) Bei Verbundlok
mit (0,5p)

5) Kondens-Lokomotive mit Ölfeuerung 6) Halbtender-Lokomotive (Wasservorrat der Lokomotive 1,8 m⁵)

Labourgiven wit SCHLEPPTENDER

	Lol	komo	tive	11.5		Ten	ler		l. er	(1)		- La	
Kes	sel	Ge	wich	te	V o	rräte	Gew	ichte	chsstd. Tender	2	řei	uin	
Verdampfgs heizfläche fb.	Uberhitzer- heizfl. auß.	Reibungs- gewicht	Leergewicht	Dienst- gewicht	Wasser	Brennstoff	Leergewicht	Dienstgew.	Gesamt-Achsstd.	Zugkraft (0,75 p)1)	Größte Geschwindigkeit	Kleinster Krüm- mungshalbmesser	Kennziffer
m ²	m ²	t	t	t	m ³	t	t	t	mm	kg	km/h	m	
30,2 17,7	1	17,0 7,5	14,5 8,6	17.0 9,6	6,6 1,8		4.5 2,2	12,5 5,0	6 600 6 040	4 380 2 o 10	30 30	25 18	25 945 22 196
32,3 61,1	30,5	11,5 22,5	13,0 25,3	14,5 28,6	4 10	2.4	4,5 8,6	$\frac{10.0}{21.7}$	7300 9890	3 330 7 100	20 50	36 100	2401° 22 52°
49,0	11,6	18,0	26,7	28,8	6,4	3	10,2	22,0	10452	4180	40	60	H 35 01
105,0	38,5	34,8	44.6	49,0	12,5	6,57)	13,7	32,0	15500	9550	70	150	2278
57.0 75.0 55.11 126.0 126.0 251.2	16,0 40,0 40.0	23,1 26,4 15,1 31,5 30,7 60,5	30,3 31,9 24,5 51,2 50,4 88,4	33,8 35,0 27,5 56,5 55,7 100,5	8 13,6 8 15 14 27,3	6 m ³ 5	9,8 13,5 8,6 12,9 15,4 29,3	19.1 33.1 37.6	11 260 13 353 12 600 14 845 13 250 19334	5250 5300 378, 8800 9000 16100	60 60 67 75 75 113	150 80 90 90 100 84	25 93 22 01 22 40 H 36 000 H 36 004 22583
201,5	76,3	55,3	88,6	96,8	31,7	9	28,7	69,4	19497	121001)	120	140	21 73
42,6 144,0	<u>-</u> 50,0	23,8 72,0	19,8 62,8	23,8 72,0	11,5 27,3		7,8 26,4	21,0 61,7	10658 14708	4860 20600	25 50	20 72	22 149 21 07
106,4 93,3 138, 185,0 74,0 40,7	30,4 21,4 65,0	40,0 42,6 64,8 68,1 26,9 18,0	43,0 39,8 69,1 75,2 32,0 21,0	48.0 47.3 76.2 81.9 37.2 24.8	12 16 25 21 13 8	3 5 10,9m ³ 7,5 5,5 3 m ³	14,5 34,5 24,3 12.9	35,5 70,0 52,0 31,7	12240 14592 17812 18835 13590 10424	10350 9800 13000 17600 7530 3820	60 50 90 60 30 35	80 150 120 130 50 50	23 058 H45 006 26 404 24 068 21 908 22 597
88,0 130,0	20,5 37,6	31,0 42,4	39,4 54,0	43,5 59,0	7.7 14	4 6 m ³	10,2 16,5	22,0 36,5	11797 14630	7350 10150	40 40	60 70	H 46 010 26 48
127,6 117,2		47,3 40,4	58.2 52.0	63,6 58,0	12,5 13,6	4 m ³ 7,1	15,0 17,2	31,3 37,9	14783 15367	10 400 8 8 5 0	48 56	60 90	25 64 21 54
128,0 130,1		45,5 46,8	57.4 57 0	64,2 62,0	15,1 7	4,1 8,2m ³	18,2 34,0	37,4 48,0	16500 16245	12300 9875	55 40	90 75	23 51 21 92
174,2	63,5	60,1	70,6	80,2	14	8	17,0	39,0	16975	14600	65	100	2489
177,4 226,5	88,2 83,9	65 68,0 (68,3)	81,5 90,2 (91,5)	90,8 99,0 (1u0,3)	22 30	10 11	25,0 31,0	57,8 72,0	18900 18750	14600 20800 (19200)	72 90	183 140	22 905 22 595 (22 600

 ⁷⁾ Wahlweise Holz- oder Kohlenfeuerung (Holzvorrat 9 m³)
 8) Ölpalmkernschalenfeuerung

 ²⁾ Holzfeuerung
 3) Ölfeuerung
 4) Halbtenderiokomotive

Entwurf und Konstruktion: Henschel Hersteller: Krupp u. Masch. Fabrik Eßlingen
 Klammermaße für Reihe 02

Eine Auslese bemerkenswerter Henschel

1	1		, br		211			okom				
1	1		l in			Trie	b · ur	d Laı	ıfwe	rk	Кe	88e
	. 5	Größter	Achsanordnung	Eigentümer bzw.	Ø	Kolbenhub	Ø	Ø	-	, ,	Kesseldruck	9
ž	2	E.	i i	Bestimmungs-	Zylinder	님	Treibrad	7	Fester	Gesamt- Achsstand	1 5	Rostfläche
1-	Spur	90	psi psi	land	Ĕ	a	l d	Laufrad	er	set m	ele	E
3	ds	55	Te le	1and	2 2	[5	le.	an	Set	ses	388	a a
1	mm		1		- 12	×	H	H	F	PAG	M	2
-	111111	U	-		mm	mn	nm	nım	mm		atii	m
3		5 18			650	660	1750	850/125	0 3900	11900	18	1.0
3				Chilenische Stb	620	711	1422	870/106	7 4725	10550	15	5.2
33		3 14,	5 2 D	Beira-Alta (Portugal)	2 × 42	650	1630	1				
34	600	5,	5 2 D	San Paulo & Minas	2 × 64	0	1030	913	3700	9850	10	3,9
35	1000	13,	5 2 D	Ry Co (Brasilien)2)	350	400	770	550	2700	6780	12	1,6
				west-Rahn2)	550	550	1220	695/735	2000	0.000	١	
37	1000	13,	9 2 D 1		500	610	1270		3900 4115		13,4 14	4,0
38	1067	17,	2 D 1	Klasse 19 Südafrikan, Staatsb.	533	660	1372	724/864	4394	9881	14	3,3
38	1067	18,0	2 D 1	Klasse 12 A Südafrikan, Staatsb.	610	660	1295	723/838	4114	9 779	13	3.7
40	1067	18,6	2 D 1		610	711	1524	864	4800	10 871	14,8	5,7
41	1435	17.0	2 D 1	Klasse 23 Bulgarische Stb.(R03)	610 3 × 500	711	1600	864 1000/1250	3353	11290	15.8	
42	1676	16.2	2 D1		460		1000	200 /1200	3700	11 900	16	4,8
43			1	Südafrikan, Staatsb.	2×700	080	1750	860/1220	5550	12 675	16	5,0
4 4	1676	20 5	2D2	Klasse 25	609	711	1524	762	4801	11 582	14,8	6,5
-	1070	20,0		Chilenische Staatsb	620	711	1676	870		12 910	17	6,5
45 46			E 1E	Plantagenbahn 2) 12)	330	400	700	_	1800	3 400	13	1,4
47	1000	10 0	1 E	Tungpu-Bahn (China) Staatsb.v.Indochina)	450	500	1000	700	3600	6 900	13	2,1
148	1435	14.0	1 E	Staatsb. v. Urngnav3)	500 530	550 660	1100 1525		2800	8 300	12	2,6
49	1435	17,9	1E	Tranische Staatsh 3)	630	720	1450	914 1000	1675	9350 9000		3,9
51	1435 750			Turkische Staatsh	650	660	1450		3800	10 300	15	4,5
	1000	5,7	151	Kleinbahnlokomotive	400	370	800	550		7050	16	1.6
53	1000	15.2	iEi	Brasil. Zentralbahn Argentin. Staatsb.3)	515	560	1156	603/749	3690	10560		6,0
54	1000	15 8	1 TC 1	Sorocabana (Brasil.)	585 3 × 530	610	1219	/80/914	5284	10 389	14	4.1
55	1067	13,5	1E1	Mozambique(Portug Ostafrika)						10 100		4,95
56	1435	17,0	2 E	Bulgarische Staatsb.	$\begin{array}{c} 546 \\ 3 \times 520 \end{array}$	610	1220	711/838	3900	10 600		5,0
57	1000	16.0	2 E 1	Paulista-R (Bracil 12)	3×520 3×530	560	1450	850	5300	10 900	16	4,87
58	1600	20,0	1 E 2	Brasilian. Zentralb		711	1220 1435	630/863 933/1080	4800	11295	14	5,6 8,7
59	1067	11,0	1D D	Indonesische Stb.*)11)	2×450	610	1102			1650		
60	1000			Brasilian. Zentralb.11)			-					4,1
_					± ^ 40Z	200	1007	630/743	3600 1	4 750	14.8	7.0

Bauart Hanomag
 Bei Verbundlokomotiven ist die mit (0,5 p) errechnete Zugkraft angegeben.

Typenskizze auf Seite 407 . Bilder auf Seite 356-358, 361, 363, 368, 370, 393-395, 404

Lokomotiven mit SCHLEPPTENDER

	Lok	omo	tive			Tend	ler	* 11111		2		. 4	
Kes	sel	G	ewlcl	h t e	Vo	rräte	Gew	ichte	der	â	eit	im	
F. Verdampfgs	g Überhitzer- e heizfl. außen	Reibungs-	- Leergewicht	Dienst.	g Wasser	The Brennstoff	Teergewicht	т Dienstgew.	B Gesamt- B Achsstand von Lok und Tender	g Zugkraft (0,75 p)1)	g Größte Geschwindigkeit	B Kleinster Krüm- B mungshalbmesser	Kennziffer
224,0 295,5		74,0 81,0	95,0 101,0	105,0 113,0	29 34	8 8	27,6 32.0	64,0 74.0	19400 19750	19200 21600	100	150 180	23 135
198,0	D 7111	58,0	78,0	86,0	23	7			19200	13 1001)	90	180	21 573
60,2	18,6	22,0	26,9	30,0	7,5	4,5	8,8	20,8	13500	5750	30	70	20695
174.0 223.7	65,0 68,0	54,0 55,1	69,0 74,2	78,0 83,9	17 10,4	18 m ³ 9,5	19,4 44,1	47,2 65,5	17500 20955	$13650 \\ 12600$	70 60	$\frac{90}{120}$	22 872 23 904
155,7	36,2	55,1	75,1	82,7	30	12,2	33,4	75,3	23360	14400	75	85	27 386
214,4	56,8	69,7	87,6	97,7	27	11,9	28,1	67,0	18780	18500	60	90	21 046
292,5	5.7	72,0	94,6	109,5	27,3	14,2	28,6	70,1	19969	19200	80	84	23 000
292,5 224,1	74,0 81,9	74.3 68.0	101,3 99,6	114,2 108,0	43,3 28	18,3 13		109,2 70,0	23837 19605	19600 19090	88 100	84 140	23742 25931
231,4	83,6	64,6	94,3	104,2	0)	ne Tender	gelief	ert		153001)	110	160	H47000
289,5 324,5	61,6 119,5	75.1 81.0	108,5 121,0	122,0 135,0	47,7 30	18,3 8	42,8 33,0	108,8 71,0	24706 22110	19200 20800	90 110	85 180	28731 22741
48,5 113,0 140,0 150,0 212,5 225,0 70,1 179,5 224,4 269,0	45,0 53,6 76,0 105,8 24,5 66,0 82.0	21,4 37,5 50,0 70,0 89,1 92,5 28,5 62,1 75,4 79,0	19,3 37,5 51,0 72,3 90,8 97,0 32,5 72,5 80,4 81,9	21,4 42,5 56,5 79,8 99,3 106,5 37,0 81,8 91,1 93,5	6 14 14 21,5 21 29 10 18 28 17	3 m ³ 4 5 8,5m ³ 7.5 8 4 10 10,3 7	12,0 15,4 22,3 24,3 26,2 5,0 19,7 30,5	37.6 52.7 51.9 63.2 22.5 47.5 68.8	9080 14200 13440 17385 17385 18960 13153 18253 20288 17167	6000 9850 11025 14600 22160 23130 7210 14400 18000 20250	30 40 50 90 60 70 30 65 60	35 100 100 120 130 120 30 70 120 70	28 454 22 952 H 56 000 25 052 24 068 24 000 26 167 23 825 23 586 21 577
184,0 224,1 285,9 328,4	80.0	67,5 85,0 79,8 100,0	74,5 100,7 91,2 130,6	85,0 109,6 103,7 145,8	22 28 18 30	8,5 13 15,2 15	$\frac{29.0}{20.5}$	70.0 53.7	18815 19605 20131 26870	14 500 23 500 20 250 26 400	80 75 70 75	100 140 90 130	28626 25 933 22 994 23 830
194,0	64,9	88,0	86,7	96,0	18,5	7,5	17,5	43,3	18570	189001)	50	150	H45 440
218,0	85,0	96,0	106,0	117,5	18	12	22,5	52,5	21930	21 600	45	70	23 445

²⁾ Holzfeuerung
3) Ölfeuerung
5) Kondens-Lokomotive mit Ölfeuerung

¹¹⁾ Bauart Mallet 12) Mit Zahnradantrleb der Endachsen

Zahlentafel 30

Regeltypen von Henschel- Bau- und Industrie-

			·#		Т	rieb-	und I	Laufw	erk		Ke	essel		Voi	räte
Lfd. Nr.	Spur1)	Achsanordnung	Größter Achsdruck	Nennleistung	Zylinder-Ø	Kolbenhub	Treibrad- Ø	Fester Achsstand	Gesamt- Achsstand	Kesseldruck	Rostfläche	Heizfläche wb2)	Überhitzer- heizfläche	Wasser	Koble
1011	mm	ULL.	t	PS	mm	mm	mm	mm	mm	atii	m ²	m ²	m ²	m³	t
1 2 3 4	009	B B B	3,8 4,5 5,8 6,8	40 50 70 90	200 220 250 280	250 300 300 300	550 650 650 650	1100 1200 1400 1600	1100 1200 1400 1600	12 12 12 12 12	0,35 0,4 0,5 0,54	16,1 18,5 25 27,5	1111	0,6 0,6 0,8 1,25	0,3 0,3 0,5 0,6
5 6 7 8 9 10	006	B B B C CBr	9,1 10,3 11,2 12,8 12,6 12,7	125 160 200 250 400 350	300 320 340 350 420 430	400 400 400 400 400 400 400	800 800 800 800 900 900	1800 1800 1800 1800 2500 2500	1800 1800 1800 1800 2500 2500	12 12 12 13 14 14	0,72 0,83 1,0 1,2 1,31 1,7	37.8 44 53 65 65 69		1,8 2,0 2,5 2,5 3,0 3,0	0.7 0.7 0.8 1.0 1.2 1.4
11 12 13 14		B B B	10,4 11,0 12,6 14,2	125 160 200 250	320 320	400 400 500 500	850 850 950 950	1800 2500	1800 1800 2500 2500	13 13 13 13	0,72 0,83 1,0 1,2	37.8 44 53 65		2,2 2,5 3,2 3,5	0,6 0,7 0,8 0,9
15 16 17 18 19 20 21 22 23 24	1435	C C C C C C C C C C C C C C C C C C C	12.6 14.7 15.1 15.8 16.8 17.1 17.7 18.8 19.1	350 400 475 375 450 550 425 550 650 500	450 460 480 460 520 520	550 550 550 550 550 550 550 550 550	1100 1100 1100 1100 1100 1100 1100 110	3100 3100 3100 3100	3100 3100 3100 3100 3100 3100 3100 3100	13 13 13 13 13 13 13 13 13 13	1,47 1,6 1,6 2,0 1,8 1,8 2,2 2,1 2,1 2,5	85 100 88 100 114 90 114 136 105 136	21 25 25 34	4,0 4,5 4,5 5,0 5,0 6,0 5,0 5,0 5,0	1,1 1,3 1,3 1,6 1,6 1,6 3,2 1,6 1,6 2,4
25 26 27 28		D D D	16,0 16,4 20 20	600 725 675 850	540 650	550 550 600 600	1100 1100 1200 1200	2860 2860 4500 4500	4200 4200 4500 4500	14 14 14 14	2,3 2,3 2,6 2,6	152 118 164,4 135,6	36 49,3	8.0 7.0 8.5 8.5	2,0 2,0 3,0 3,0
29 30 31 32		E E 1E1	16,6 16,8 20 20	800 950 1200 1450	600 600 700 720	600 600 660 660	1300	2860 2860 3100	5720 5720 6200 11600	14 14 14 14	3,2 3,0 3,6 4,05	200 155 183 220	55 64,8 72,9	9,6 9,6 10,5 12,0	3,0 3,0 3,5 4

- 1) Die Lokomotiven werden auch in jeder anderen technisch möglichen Spur geliefert.
- 2) Die Heizflächen sind in dieser Zusammenstellung entsprechend den Gepflogenheiten der in Frage kommenden Abnehmerkreise nicht als feuerberührte, sondern als wasserberührte angegeben.
- 3) Länge für Regelspur einschließlich, für Schmalspur ausschließlich Puffer.

Lokomotiven

Steinkohlenfeuerung, soweit nicht besonders gekennzeichnet. Br=Braunkohlenfeuerung. Bilder auf Seite 362,365,369

	Auß	Benma	аßе	Zugl	raft			1		Sc	hlepp	last			t bei
vicht5)			100	8		st. ligkeit	Krüm- Ibmesser		[Wagengewicht + Nutzlast]4) in t auf gerader Steigung von						digkeit l
Dienstgewicht5)	Länge ⁵)	Breite	Höhe	(d 9,0)	(0,75 p)	Höchst- geschwindigkeit	Kleinster Krüm- mungshalbmesser	1:500	1:200	1:100	1:50	1:33 1/3	1:25	1:20	Geschwindigkeit dieser Leistung e
t	mm	mm	mm	kg	kg	km/h	m	20/00	50/00	100/00	200/00	30º/00	400/00	500/10	km/
7,6 9,0 11,6 13,6	4500 4450	$1800 \\ 1925$	2800 2800 2900 2800	1310 1610 2075 2600	1640 2010 2590 3260	15 20 20 20 20	12 14 18 22	175 215 275 350	145 190	75 95 120 155	45 55 70 90	30 35 45 60	25 25 35 45	15 20 25 35	7.5 7.0 7.5
18,2 20,6 22,4 25,6 37,8 38,2	5750 5900 6300 8450	2350 2450 2450 2550	3120 3150 3150 3150 3400 3200	3240 3680 4160 4780 6575 6900	4050 4600 5200 5970 8220 8640	30 30 30 30 35 35	26 26 26 26 60 60	430 490 555 640 875 920	335 380	190 220 245 285 390 410	105 120 140 160 215 230	70 80 95 105 145 155	50 60 70 80 105 110	50 60	8, 9, 10,0 10,1 13,0
20,8 22,0 25,2 28,4	7000 7600	2500 2600	3100 3100 3400 3550		4130 4700 5260 6650	30 30 35 35	26 26 70 70	510 585 650 830	380 425	205 235 265 340	110 130 145 185	75 85 95 125	50 60 65 90	40 45 50 65	9, 9, 10, 9,
37,8 44,1 45,3 47,4 50,4 51,3 53,0 56,4 57,3 58,2	9450 9450 9700 9800 9800 9850 10000 10000	2900 3000 3000 3100 3100 3100 3100 5100	4100	7900 8260 8950	$\frac{13180}{13180}$	40 40 40 40 40 40 40 40 40 40	90 90 90 90	1275 1645	730 800 800 835 910 835 1075 1075	390 455 500 520 565 520 670 670	215 245 270 270 280 390 280 370 370 370	140 160 180 180 185 205 185 245 245 245	100 115 130 130 130 145 130 175 175	75 85 95 95 95 110 95 130 130	11, 9, 9, 11, 12, 10, 10, 11, 9,
64,3 65 6 78,0 80,0	$\frac{11000}{11250}$	3100 3100	$\frac{4100}{4200}$	12300 12300 17750 17750	15400		100 100	1910 1910 2800 2800	$\frac{1255}{1840}$		430 430 640 640	285 285 430 430	205 205 315 315	155 155 240 240	10, 12, 12 13,
83,0 84,0 100,0 123,8	$12950 \\ 13600$	3100 3100	4250 4200	15100 15100 21000 22100	18900 26125	45	140 140	2355 2355 3300 3440	$\frac{1540}{2160}$		525 750	350 350 500 505		190	13

- 4) Voraussetzung: Lokwiderstand 10 kg/t, Wagenwiderstand bei Schmalspur 5 kg/t, bei Regelspur 4 kg/t. Die angeführten Schlepplasten gelten für Dauerleistung (0,6 p), kurzzeitig vermögen die Lokomotiven größere Lasten zu ziehen (0,75 p).
- 5) Dienstgewicht mit Ausrüstung versteht sich für lfd. Nr. 1—8 und 11—14 einschl. Dampfbremse und Acetylenbeleuchtung, für lfd. Nr. 9 und 10, 15—35 einschl. Druckluftbremse und elektrischer Beleuchtung.

Die Elna-Lokomotiven

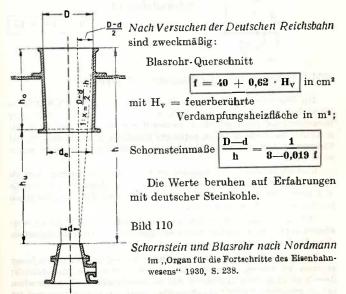
die Typi-Bezeichnung Elna-Loko moarven bekannt geworden. Dieser Name rührt her vom Engeren Lokomotiv-Normen-Assierung bearbeitete und eine Untergruppe des Deutschen Lokomotiv-Normen-Ausschuss ausriistung der Eina-Lokomotiven richtet sich jeweils nach den Wiinschen des Bestellers. vereinheitlichten deutschen

gegenüber den Elna-Typen die Neuerdings werden höhere Fahrgeschwindigkeiten verlangt. Es haben daher - und die 1 D1-Tenderlokomotiven an Bedeutung gewonnen. 1 C1- 1

Die Hauptabmessungen der Elna-Lokomotiven

Type		1	C1		3		4			5	Ĭ	9
Achsdruck t			12						14			110
Achsanordnung		C	10	5	D	_	C		1	10		I)
Dampfart N = NaBdampf	z	н	z	н	z	н	Z	н	z	н	z	н
Zylinderdurchmesser mm	380	410	410	430	450	480	410	430	430	450	480	520
Kolbenbub	2	550	550	0	2	550	220	0	2	550	2	550
Freibraddurchmesser mm	1100	1100/1200	1200	0	1100	00	1100/1200	1200	120	1200	ī	1100
Laufraddurchmesser mm		1	800	0	I	Ţ	1		œ	800	1	1
Achsstand, fest mm	30	3000	3000	0	4300	00	3000	00	30	3000	43	4300
Achsstand, gesamt mm	30	3000	5300	0	4300	00	3000	00	53	5300	43	4300
Kesseldruck atu	-	12	12		12	01	12	01	=	12	1	12
Rostfläche m²	-	ci.	1,4	_	1,66	99	1,	4	1.(1.66	1,8	1,84
VerdHeizfl., feuerb. m2	66,1	49.3	79.2 58.6	58.6	95	70,3	80	58.6	95	70,3	117	88,1
(berh. Heizfl., außen m2		17,1		21,4		25,7		21,4		25.7		31
Wasservorrat m ³	3	3,5	2	Ī	r.		2		9		9	Į.
Kohlenvorrat			1,2		1,2	c1	1,2	61	1,	1,6	1,	6.1
Größte Geschw. km/h		45/50	29/09	65	40		45/50	20	20	20/02	4	40
Zugkraft (0,75 p) kg	6500/5950	0500/5950 7560/6950	6950	7630	9100	10350	6950 7630 9100 10 350 7560 6950 8350 7630 7630	8350/7630	7630	8320	8350 10350 12200	1220
Leergewicht etwa t	31,5	32,5	36,55 37,45 38.2	37,45	38.2	39,2	34.9	35.8	38,4		41.4	42.7
Reibungsgew. etwa t	38,5	39,5	36.2	37,2	48,6	49,6	43,5	44,3	33	39.7	52,4	53,6
Dienstgewicht etwa t	38.5	39.5	45	45.9	48.6	49.6	43.5	44.8	487	8 07	F. O. A.	29 6

Bauliche Einzelheiten zur Kolbendampflokomotive


Der Kessel und seine Ausrüstung

Die Saugzuganlage

Wasser-

Die Gewichte verstehen sich ohne Sonderausriistungen wie Luftbremse, Heizung, Lilutewerk, Beleuchtung, reiniger, Vorwirmer und Geschwindigkeitsmesser.

Schornstein und Blasrohr sind wesentlich für die Leistungsfähigkeit des Kessels. Anzustreben sind tiefe Lage des Blasrohres, weites Blasrohr und großer Schornsteinquerschnitt, dann geringer Rückdruck auf den Kolben.

Berechnung von Saugzuganlagen nach Koch in "Die Lokomotive", 1942, S. 71.

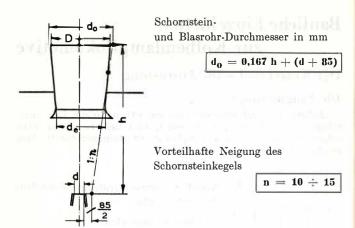


Bild 111. Schornstein und Blasrohr nach Strald

Die Strahlschen Formeln (Organ 1911, S. 321 — ZVDI 1913, S. 1739 — Eisenbahntechnik der Gegenwart 1912, S. 328) lassen sich mit genügender Genauigkeit auf jeden beliebigen Brennstoff anwenden; an Stelle der tatsächlichen Rostfläche R ist die reduzierte Rostfläche R' einzusetzen, die bel Verfeuerung deutscher Steinkohle von etwa 7000 kcal/kg Heizwert vorzusehen wäre.

Über amerikanische Überlegungen zur Bemessung der Saugzuganlage als Bestandteil der "Locomotive front ends" siehe u. a. "Locomotive Cyclopedia of American Practice", 13 th edition, 1947, S. 296, sowie Johnson "The steam locomotive". New York 1944. S. 34.

Mehrfach-Blasrohre unterteilen den Dampfstrahl in verschiedene Einzelstrahlen und bewirken durch die vergrößerte Dampfstrahloberfläche bei gleichem Gegendruck u. U. erhöhte Feueranfachung.

Um die Blasrohrwirkung dem wechselnden Zustand des Feuerbettes besser anpassen zu können, verwendet man vielfach verstellbare Blasrohrköpfe; deren Nachteil ist darin zu erblicken, daß die Blasrohrmindung wohl nur selten auf die günstigste Wirkung hin einwandfrei eingestellt werden kann und bei unrichtiger Einstellung noch nachteiliger ist als das stets nahezu richtig bemessene feste Blasrohr.

Stehbolzen

können für Kesseldrücke bis zu etwa 25 atü verwendet werden. Darüber hinaus kommen Sonderbauarten von Lokomotivkesseln in Betracht (siehe Seite 240). Die Berechnung der Stehbolzen (nach LON 2061) berücksichtigt im wesentlichen die Beanspruchung durch den Kesseldruck und schließt auf Grund von Erfahrungen die durch höhere Wärmeausdehnung der Feuerbüchse im Betrieb bedingten Biegungsbeanspruchungen ein.

Nach neueren Erkenntnissen werden die Stehbolzen jedoch noch weit stärker durch dauernd zunehmende bleibende Verformungen des Hinterkessels beansprucht. Bei Stahlfeuerbüchsen kommt hinzu, daß die Feuerbüchse sich im Betrieb mit der Zeit in ihren Maßen verkürzt. Es ergibt sich hieraus eine zusätzliche Biegungsbeanspruchung der Stehbolzen, und zwar in entgegengesetztem Sinn, als bisher angenommen wurde.

Die Auswirkung dieser Einflüsse kann gemildert werden:

- a) durch bauliche Maßnahmen, die den Widerstand gegen die Verformung des Hinterkessels erhöhen (beispielsweise durch Einbau von Bodenring-Querankern).
- b) durch zweckmäßiges Gestalten der Stehbolzen. Die Stehbolzen müssen so geformt sein, daß sie möglichst stark verbogen werden können, ehe eine plastische Verformung eintritt. Diese von den Stehbolzen aufzunehmende Formänderungsarbeit muß also möglichst groß sein, damit beim Erkalten des Kessels den auf die Verformung des Hinterkessels wirkenden Kräften höchster Widerstand entgegengesetzt wird. Außerdem soll der Stehbolzen so geformt sein, daß überelastische Verformungen sich gleichmäßig auf große Längen verteilen und daher in den einzelnen Querschnitten gering bleiben.

Der BTH-Stehbolzen (Bauart Tross-Henschel) erfüllt obige Forderungen weitgehend, stellt also eine optimale Lösung des Problems dar.

Für kupferne Feuerbüchsen kommen folgende Ausrüstungen in Betracht:

- a) Kupferne Gewindestehbolzen in den mäßig erhitzten Zonen. In der Feuerzone höher beanspruchter kupferner Feuerbüchsen werden kupferne Stehbolzen oft undicht, was zu starken Abzehrungen an Wänden und Stehbolzen führt. Daher
- b) Einbau von Kuprodurvorschuhen (ausscheidungshärtbare Kupfermehrstofflegierung mit 98% Cu), mit den kupfernen Wandteilen verschweißt, insbesondere in den unteren Teilen der Feuerbüchsseitenwände und der Türwände.
- c) Gewindestehbolzen aus Stahl oder besser Kupferpanzerstahl (KPS), für Kuprodurwandteile. KPS-Stehbolzen zehren erfahrungsgemäß selbst in jahrelangem Betrieb nicht ab, noch werden sie undicht. Auch ein Brechen dieser Stehbolzen in Kuprodurvorschuhen wurde nicht beobachtet.

Bild 112 Henschel-Aufdornstehbolzen

d) Gewindestehbolzen als Henschel-Aufdornstehbolzen (siehe obiges Bild). Die Bolzengewinde werden mit geringem Untermaß gegenüber dem Muttergewinde ausgeführt und dadurch ohne Schaftverdrehung sowie olne Verletzung der Gewinde leicht von Hand eingeschraubt. Das Abdichten erfolgt auf besonders einfache Weise durch Eintreiben eines zu der paraboloidähnlichen Aufdornhöhlung passenden Auftreibdornes mittels eines Preßlufthammers, der auch das Lösen des Dornes nach dem Aufweiten bewirkt (Bilder 113/114).

Bei Bolzen mit durchgehender Bohrung wird in der Regel auf der Stehkesselseite eine Verschlußkappe aus dem gleichen Baustoff wie für den Stehbolzen eingesetzt, die mit einem Verschlußdöpper gesichert wird, ohne daß der Kopf gebördelt zu werden braucht (Bild 115).

Auf der Feuerbüchsseite der kupfernen Stehbolzen wird ein kriiftiger, breiter, gut anliegender Ringkopf unter Verwendung eines Bördeldöppers (Bild 116) gebildet, der wihrend des Arbeitens von Hand oder mittels besonderen Drehhammers gedreht werden muß. Das Lösen der eingetriebenen und festsitzenden Auftreibdorne geschieht mit dem gleichen Preßlufthammer, der das Eintreiben der Dorne besorgt. Der Preßlufthammer besitzt eine Henschel-Dorn-Eintreib- und Rückzieheinrichtung.

Der Henschel-Aufdornstehbolzen wird sowohl als Kupfer- wie auch als KPS- oder Stahl-Gewindestehbolzen ausgeführt.

Bei Stahlfeuerbüchsen hat sich das Einschweißen von gewindelosen Stahlstehbolzen gut bewährt, richtige Bauform und richtige Schweißfolge vorausgesetzt. Die Stehbolzen werden zumindest feuerbüchsseitig mit Spiel eingebaut. Das Spiel zwischen Bolzen und Bohrung, das mindestens 0,5 mm betragen soll, nimmt einen Teil der Wärmeausdehnung der besonders erhitzten Wandteile auf und vermindert dadurch sowohl die Durchwölbung des Hinterkessels als die Schrumpfung der Feuerbüchse.

Eingeschweißte durchgehend zylindrische Bolzen haben den Nachteil, daß gefährlicher Querschnitt mit dem Querschnitt des größten, durch die Schweißnaht bedingten Festigkeitsverlustes zusammenfällt. Dieser Querschnitt wird Infolge der hohen Spannungsspitze bei plastischen Verformungen besonders stark gelängt. Außerdem entsprechen diese Bolzen nicht der Forderung höchster zulässiger Formänderungsarbeit. Es sind daher bei zylindrisch gewindelos eingeschweißten Stehbolzen infolge überelastischer Verbiegung oft Brüche beobachtet worden.

Der feste BTH-Stehbolzen vermeidet diese Nachteile weitgehend und eignet sich daher für das Einschweißen in Stahlfeuerbüchsen. Seine Köpfe sind so dimensioniert (Bild 117), daß der Festigkeitsabfall in der Nähe der Schweißnaht ausgeglichen wird.

Bild 113
Preßlufthammer

Bild 114

Auftreibdorn

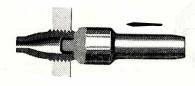


Bild 115 Verschluβdöpper

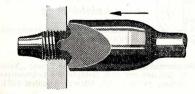
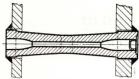
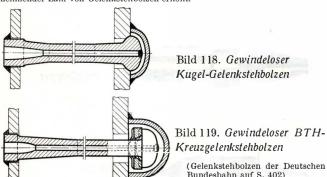


Bild 116

Bördeldöpper

Werkzeuge für den Einbau des Henschel-Aufdornstehbolzens




Bild 117. Gewindeloser BTH-(Tross-Henschel-)Stehbolzen

Auch KPS-Stehbolzen haben sich in Stahlfeuerbüchsen gut bewährt. Sie können ebenfalls gewindelos eingeschweißt werden und ersetzen dank ihrer Korrosionssicherheit in vielen Fällen die Gelenkstehbolzen.

Der auf S. 182 oben erläuterte Henschel-Aufdorn-Gewinde-Stehbolzen findet auch für Stahlfeuerbüchsen Anwendung. Es empfiehlt sich dann, die überstehenden Kopfenden in der Feuerbüchse dicht zu schweißen.

Gelenkstehbolæen werden als Kugel- oder noch besser als Kreuzgelenkstehbolzen ausgeführt. Feuerbüchsseitig sind sie wie feste BTH-Bolzen gestaltet und verschweißt.

Man sollte die Anzahl der Gelenkstehbolzen auf das geringstmögliche Maß beschrünken, da sich die unerwinsente Durchwölbung des Hinterkessels mit zunehmender Zahl von Gelenkstehbolzen erhöht.

Über die mit Stehbolzen zusammenhängenden Fragen siehe Tross: "Neue Erkenntnisse und Konstruktions-Richtlinien auf dem Gebiete des Lokomotiv-Hinterkessels (Stehbolzen, Feuerbüchse, Stehkessel)", Glasers Annalen 1951, S. 234, 257 u. 293.

Ankerlose Kessel sind ausgeführt worden

 mit zylindrischem "Steh"kessel und zylindrischer Wellrohr-Feuerbüchse (Lentz, Krauss). Unzulässige Formänderungen der Wellrohr-Feuerbüchse konnten bisher nicht vermieden werden. 2. mit einem System von senkrechten, oben in einen Dampfsammler einmündenden Wasserrohren, die die Stehkessel- und die Feuerbüchsseitenwände mit ihren Ankern und Stehbolzen ersetzen. Voraussetzung ist gutes Speisewasser. — Derartige Wasserrohrkessel sind bisher in nennenswertem Umfang lediglich bei den Ungarischen Staatsbahnen eingeführt worden, und zwar nach der Bauart Brotan. Auch zwei von Henschel & Sohn gebaute Lokomotiven der Baureihe 42 (siehe S. 359) waren mit Brotan-Kesseln versehen.

Entwurfsgewichte für genietete Kessel

Wieviel Quadratmeter fb. Verdampfungsheizfläche können in 1 Tonne Lokomotiv-Dienstgewicht (ausschl. Tender) untergebracht werden? Zahlentafel 22

	Heizfläche fb. m²		läche je Tonn okomotiven Schmalspur		cht in m² okomotiven Schmalspur
Lokomotiven mit Schlepptender	80 · 110 120 · 160 170 · · · 210 220 · · 310	2,2 ÷2,6 2,3 ÷2,8 2,5 ÷3,4 3,15÷3,5	2,3-:-2,8 2,8:-3,0 	etwa 2,2 2,22,6 2,32,6 2,22,8	$ \begin{array}{c} 1,8 \div 2,4 \\ 2,2 \div 2,7 \\ 3,0 \div 3,2 \\ 2,4 \div 2,8 \end{array} $
Tender- Lokomotiven	40 ÷ 70 80 ÷ 110 120 ÷ 150 160 ÷ 200	1,8÷-2,1 1,8÷2,3 1,8÷2,3 2,3÷-2,4	1,7:-2,1 1,9:-2,3 2,0:-2,3 2,0:-2,2	$1,4 \div 2,0 \\ 1,2 \div 1,5 \\ 2,0 \div 2,4 \\ 1,7 \div 2,0$	1,6-:-2,0 1,6-:-2,1 etwa 2,2 1,8:-2,3

Welches Kesselleergewicht in t ist für je 10 m² feuerberührter Verdampfungsheizfläche einzusetzen? Zahlentafel 33

Heizflächefb.	Kesseldruck	Kesselge	wicht in t
m²	atü	Runder Stehkessel	Stehkessel nach Belpaire
50	12	etwa 0,9	ctwa 1,0
100	$12 \div 14$	0,88 - 1,2	0,95 - 1,9
150	14	$0.86 \div 1.1$	0,92 - 1,7
200	16	0,841,2	0,88-1,6
300	20	0,82:1,1	0,84÷1,3

Angegebene Gewichte verstehen sich ohne Kessel-Ausrüstung u. ohne Überhitzer.

Der vollständig geschweißte Lokomotivkessel ermöglicht — je nach Größe der Lokomotive — Gewichtsersparnisse bis zu etwa 1½ t bei europäischen Bauarten. Ausführungsbeispiel S. 402: Kessel der Baureihe 23 der Deutschen Bundesbahn. Kennzeichnende Merkmale:

Verbrennungskammer — Große Bodenringbreite — Bodenring U-förmig, mit den Stegenden stumpf angeschweißt — Feuerloch durch Stumpfschweißen der gekümpelten Umbuge — Stumpfschweißung für Feuerbüchse, Stehkessel und Langkessel — Rauchkammerrohrwand mittels T-förm. Ring an Langkessel angeschweißt — Rauchkammer mittels Winkelringes an Rohrwand angesetzt.

Feuerbüchsen aus Stahl

sind leichter und billiger als solche aus Kupfer, ihre Lebensdauer kann bei sachgemäßer Behandlung etwa ebenso groß wie die einer Kupferbüchse sein. Bei hohen Drücken (von 16÷18 atü an) müssen sie angewendet werden, da mit steigender Wassertemperatur das Kupferblech stark an Festigkeit einbüßt.

Stahlfeuerbüchsen sind empfindlich gegen plötzliche Abkühlung und empfänglich für den Ansatz von Kesselstein, da Stahl und Kesselstein etwa den gleichen Wärmeausdehnungskoeffizienten haben, der Kesselstein sich also bei Wärmedehnungen nicht vom Stahlblech löst. Bei weichem Wasser hingegen ist die geschweißte Stahlfeuerbüchse mit Stahlstehbolzen zuverlässig. Bel Verfeuerung stark schwefelhaltiger Kohle ist die Stahlfeuerbüchse der Kupferbüchse gegenüber vorzuziehen.

Stahlfeuerbüchsen erfordern in weiterem Umfange die Verwendung von Gelenk-Stehbolzen (S. 184).

Als Werkstoffe kommen in Betracht:

- 1. Izett II Stahl mit 40 ÷ 50 kg/mm2 Zugfestigkeit
- 2. Stahl nach A.S.T.M. Specification1) A 30-46:

Grade A: Zugfestigkeit $38,7 \div 45,7 \text{ kg/mm}^2 (55 \div 65\,000 \text{ lbs. per sq. in.})$ oder

Grade B: Zugfestigkeit 33,7-40,7 kg/mm² (48-58000 lbs. per sq. in.)

Der Schüttelrost Bauart Henschel

kennzeichnet sich dadurch, daß die "Finger" an ihren äußeren Enden durch Ansätze nach unten verlängert sind — und zwar so weit, daß diese Ansätze beim Schütteln immer noch zwischen den Fingern der anliegenden Elemente bleiben.

Hierdurch wird vermieden, daß beim Schütteln

die Rostspalten vergrößert werden — was bekanntlich besonders bel niedrigem Feuer das Einströmen nicht genügend vorgewärmter Verbrennungsluft begünstigt und damit zu schädlichen Spannungen in der Feuerbüchse führen kann

eln Verklemmen der Finger eintritt.

Die Verlängerung der Finger nach unten bedeutet eine Vergrößerung der Rostoberfläche und hat damit bessere Vorwärmung der Verbrennungsluft und bessere Kühlung, d. h. längere Lebensdauer des Rostes zur Folge.

Die ursprünglichen Rostspalten bleiben selbst bei längerem Betrieb in ihrer vollen Breite erhalten, da die Finger dank ihrer Ansätze während einer längeren Zeit aneinander vorbeigleiten, als beim üblichen Schüttelrost möglich. Die sich ansetzenden feinen Schlacken werden restlos abgerieben.

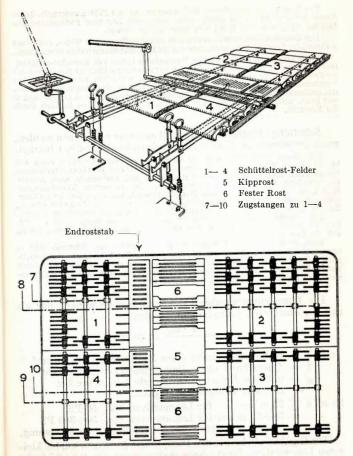


Bild 120. Der Henschel-Schüttelrost

¹⁾ American Society for Testing Materials.

Der Rost ist der einfacheren Bedienung wegen in 4 Felder unterteilt. Jedes dieser Schüttelfelder wird durch einen besonderen Zug vom Führerstand aus betätigt, und zwar von Hand oder auch mittels Dampf.

Der Henschel-Schüttelrost ermöglicht es auf vollkommene Weise, das Feuer während der Fahrtaufzulockern, ohne daß die Feuertür offengehalten werden muß.

Nach Versuchen der Deutschen Bundesbahn haben mit Henschel-Schüttelrost ausgerüstete Lokomotiven selbst bei Verwendung schlechter Kohle drei- bis vierfache Laufzeiten gegenüber Lokomotiven mit normalem Rost erreicht. Die Versuchslokomotiven hatten stets helles Feuer und machten auch beim Fahren mit größeren Füllungen ausreichend Dampf. Das Arbeiten mit dem Feuerhaken war kaum nötig, damit entfiel auch das Einströmen schädlicher Kaltluft durch die Feuertür.

Selbsttätige Rostbeschickung muß meistens vorgesehen werden, wenn der stündliche Kohlenverbrauch mehr als $2 \div 2\frac{1}{2}$ t beträgt.

Ein Stoker fördert je nach der Drehzahl der Dampfmaschine etwa 450 bis 11500 kg Kohle/Stunde. Er ermöglicht stündliche Rostbeanspruchungen bis zu etwa 1200 kg Kohle je m³ Rostfläche und verbraucht nach Angabe der Standard Stoker Co. bis zu etwa 3% des erzeugten Kesseldampfes. Man kann mit einem stündlichen Dampfverbrauch von etwa 390 kg rechnen, wenn insgesamt 1250 kg Kohlen gefördert werden; von etwa 550 kg für 4200 kg Kohlen. Es sind Stoker für Leistungen bis zu 20 t/h Kohle ausgeführt worden.

Der Standard Stoker HT bedingt ein zusätzliches Baugewicht von rd. 2450 kg. Hiervon entfallen etwa 1860 kg auf den Tender, die restlichen 590 kg

auf die Lokomotive.

Beim Zerkleinern und Fördern der Kohle mittels einer Schnecke fällt in gewissem Umfange Kohlenstaub an. Um die hierdurch bedingte Rußbelästigung möglichst gering zu halten, muß man unverbrannten Kohienstaub durch Funkenfänger in der Rauchkammer abfangen oder aber durch den Schornstein hoch hinausschleudern (self cleaning front end).

Die Dampfeinströmrohre kann man bemessen nach der als zulässig erachteten Dampfgeschwindigkeit

$$c = \frac{F \cdot c_m}{f}$$
 in m/sec

mit F = Kolbenquerschnitt eines Zwillingzylinders in cm²

f = Querschnitt eines Dampfeinströmrohres in cm²

c_m = mittlere Kolbengeschwindigkeit in m/sec bei höchster Fahrgeschwindigkeit.

Es sei c ≤ 25 m/sec für Lokomotiven bis 50 PS

= 30÷60 m/sec für Lokomotiven von 50÷300 PS

= 60-÷80 m/sec für Lokomotiven über 300 PS Leistung.

Die Geschwindigkeit in den Dampf*ausström*rohren soll bei kleineren Lokomotiven das 0,5 fache, bei größeren das 0,6-÷0,7 fache der oben angegebenen Werte betragen.

Speisewasser-Vorwärmer

Das Vorwärmen des Speisewassers auf 90-÷100° C bringt bei 10° C Frischwassertemperatur eine Brennstoffersparnis bzw. eine Leistungssteigerung von mehr als 10 %, beim Franco-Crosti-Vorwärmer infolge der höheren Vorwärmtemperatur (bis rd. 180° C) eine solche von etwa 18÷20 %.

Es bestehen folgende Möglichkeiten:

- 1. Vorwärmen durch einen Teil (etwa 1/6 ÷ 1/2) des Abdampf es: Abdampf vorwärmer
 - a) Oberfächenvorwärmer. Nur wirksam, wenn die Wasserrohre von Verunreinigungen frei gehalten werden. Ausnutzungsgrad im Betrieb erfahrungsgemäß etwa 60 %.
 - b) Mischvorwärmer(Heinl, WorthIngton, ACFJ, Dabeg, Knorr, Henschelu.a.).
 Beginnt den Oberflächenvorwärmer zu verdrängen dank seiner Vorzüge:

Keine Verschlechterung des Wirkungsgrades mit der Betriebsdauer Rückgewinnung von etwa 15 % Speisewasser

Schonung des Kessels, da das Speisewasser im Speicher entgast und teilenthiirtet wird

Das mit dem niedergeschlagenen Abdampf in den Kessel gelangende Öl stört den Kesselbetrieb kaum. Es wird im Mischvorwärmer durch den Kesselstein gebunden. Die Ölreste werden zusammen mit dem Kesselstein entfernt.

2. Vorwärmen durch die Rauchgase: Abgasvorwärmer

Es hat sich keine der zahlreichen versuchten Bauarten auf die Dauer bewährt.

3. Vereinigter Abdampf- und Abgas-Vorwärmer Franco-Crosti (Bild S. 401).

Hoher Wirkungsgrad (in Italien bis etwa 20% Ersparnls festgestellt), bei gleichbleibender Kesselleistung kein nennenswertes Mehrgewicht gegenüber der Normalausführung.

Der Henschel-Mischvorwärmer mit Heißwasserspeicher zeichnet sich durch besonders einfache und betriebssichere Bauweise aus.

Das Speisewasser wird durch einen Teil des Zylinder-Abdampfes mittels einer im Speicher unter Wasser liegenden Mischdüse aufgeheizt. Der mit dem Pumpenabdampf betriebene Abdampfstrahlheber zur Sicherung des Wasserstandes ist ebenfalls in den Wasserspeicher eingebaut.

Bei Tenderlokomotiven (Bild 121) wird der Heißwasserspeicher in einfacher Weise durch eine Trennwand im Wasserkasten gebildet. Der Heißwasserspeicher ist im Betrieb stets bis zur Überlaufkante gefüllt, kann aber mit dem Aufbrauchen des Wasservorrates im Hauptbehälter gänzlich leergespeist werden. Dieser Wasservorrat bleibt kalt, so daß der Injektor als zweite Speiseeinrichtung jederzeit benutzt werden kann.

Bei Schlepptenderlokomotiven sitzen die Wasserkammern beiderseits der Rauchkammer (Bild 122).

Der Dampfanstellschieber ist das einzige Organ, das bedient werden muß. Sonstige Regelorgane, Rückschlagventile, Schwimmer usw. enthält die Anlage nicht. Die Rohranordnung fällt damit sehr einfach aus.

Zusätzliche Baugewichte je nach Größe der Lokomotive etwa 0,5-1,0 t.

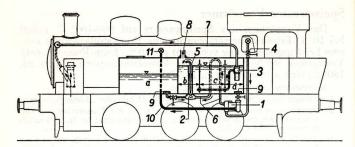


Bild 121 Henschel-Mischvorwärmeranlage MVT an einer Tenderlokomotive

Dampf

Gemisch von Warm- und Kaltwasser

Heißwasser Kaltwasser 1111:1111111

Turbo-Speisepumpe

Abdampf-Strahlheber

Abdampf-Strahlvorwärmer

Dampfanstellschieber

Überlaufrohr

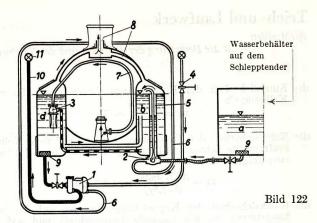
Turbopumpen-Abdampf-Leitung

Zylinderabdampf-Leitung

Entlüftung

Sieb am Wasserkasten

Heißwasser-Speiseleitung


11 Kesselspeiseventil

Tender-Wasserkasten

Kaltwasser-Kammer (bei Lok mit Schlepptender seitlich der Rauchkammer)

c Heißwasserspeicher

Heißwasser-Kammer (bei Lok mit Schlepptender seitlich der Rauchkammer).

Henschel-Mischvorwärmeranlage MVC an einer Lokomotive mit Schlepptender

Bezeichnungen wie unter nebenstehendem Bild 121

Die Henschel-Turbo-Speisepumpe (Bild S. 360 u. 405) arbeitet bei niedrigem Dampfverbrauch und sehr geringem Wartungsaufwand selbst bei aufdampfendem Speisewasser betriebssicher.

Einstufige Bauart, geringer Raumbedarf

Fördermenge normal $15 \text{ m}^3/\text{h} = 250 \text{ l/min}$

Förderdruck normal 16 atii

Durch Änderung der Düsen in Turbine und Pumpe kann der Förderdruck bis 25 atii, die Fördermenge bis 21 m3/h entspr. ~ 350 l/min gesteigert werden.

Drehzahl etwa 10000 U/min.

Gewicht etwa 100 kg (äußerst niedrig!).

Dampfverbrauch 2:2,5% der geförderten Wassermenge (relativ geringer bei größeren Einheiten)

Zum Vergleich: Gewicht einer 125 1-Kolbenpumpe etwa 380 kg 250 1-Kolbenpumpe

etwa 500 kg

350 1 - Pumpe Nielebock-Knorr etwa 600 kg

Trieb- und Laufwerk

Richtzahlen

für die Bemessung der Radsätze und des Triebwerks

Es betrage

die Knicksicherheit der Kolbenstange, bezogen auf die volle Kolbenkraft

 $m = \frac{\pi^2 E J}{P \cdot L^2} \sim 5$

die Knicksicherheit der Treibstange, bezogen auf volle Kolbenkraft, größte Schräglage der Stange und die Ebene des kleinsten Trägheitsmomentes

 $m = \frac{\pi^2 E J_{min}}{P \cdot L^2_{Tr}} = 1,2 \div 2,0$

- die Knicksicherheit der Kuppelstange, bezogen auf die beim Sandstreuen zu übertragende Stangenkraft und auf die Ebene des kleinsten Trägheitsmoments $m=2\div 3$
- die größte Schräglage der Treibstange nicht unter 1:5
- die größte Flächenpressung zwischen Kreuzkopf-Gleitplatte und Gleitbahn $p=8\ kg/cm^2$ (bei höheren p-Werten muß die Gleitplatte mit Weißmetallfutter versehen werden)
- die größte Flächenpressung zwischen Kreuzkopfbolzen und vorderem Treibstangenlager p $=250\div380~{\rm kg/cm^2}$
- die größte Flächenpressung im Treibstangenlager p = $120 \div 150 \text{ kg/cm}^2$ im Kuppelstangenlager p = $80 \div 130 \text{ kg/cm}^2$
- die größte, durch das ruhende Gewicht im Lauf- oder Kuppelachslager hervorgerufene Flächenpressung p = $12 \div 17~{\rm kg/cm^2}$ (die waagerecht wirkende, durch die Zylinderkräfte hervorgerufene Beanspruchung der Treib- und Kuppelachslager beträgt etwa das 3 fache von p!)
- der Reibungswert der Gleitbahn (= größte Flächenpressung \times mittlere Kolbengeschwindigkeit bei höchster Fahrgeschwindigkeit) $\zeta \leq 30 \div 45$

- der Reibungswert (= größte Flächenpressung × größte Gleitgeschwindigkeit) des kurbelseitigen Treibstangenlagers der Kuppelstangenlager am Kuppelzapfen am Treibzapfen $\zeta = 140 \div 400$ $\zeta = 60 \div 100$
- die größte Durchbiegung der Gleitbahn ≤ 1,5 mm
- die größte Biegungsbeanspruchung des Treibzapfens bei punktförmig gedachtem Kräfteangriff $\sigma_{\rm b} \le 1200 \div 1500~{\rm kg/cm^2}$
- die Spannung in den schwächsten Teilen von gekröpften Achsen $1600 \div 2000 \text{ kg/cm}^2$
- die Wanddicke des Dampfzylinders mit d=Zyl.-Durchm. in em für Hochdruck $\delta=0.025~d+1.5$ in em für Niederdruck $\delta=0.015~d+1.5$ in em
- der Achsschenkeldurchmesser nach v. Borries ("Hütte" III, 25. Auflage, S. 882)

für Treibachsen $d = 6^{\frac{3}{2}} \sqrt{P (D + 500)}$ in mm für Laufachsen $d = 65^{\frac{3}{2}} \sqrt{P}$ in mm

wenn P die gesamte ruhende Achsbelastung in t und D den Raddurchmesser in mm bezeichnet. Die "Eisenbahntechnik der Gegenwart" (Kreidels Verlag, 1912, S. 382) bemißt die Achsschenkel nach der Biegungsspannung durch den Dampfdruck, der mit dem Abstand von Mitte Zylinder bis zum Auslauf der Achshohlkehle an der Radinnenseite als Hebelarm wirkend angenommen wird. Es soll die sich hieraus ergebende Biegungsbeanspruchung sein $\sigma_b \leq 900 \div 1200 \text{ kg/cm}^2$ Vorschriften über die Berechnung der Achswellen für Wagen und Tender finden sich in TV § 51 und BO § 32.

die Anzahl der Speichen eines Rades = Laufkreisdurchmesser in Dezimetern (möglichst ungerade Speichenzahl!)

Die Treib- und Kuppelstangen müssen bei höheren Drehzahlen nicht allein auf Knicksicherheit, sondern auch auf die zusätzlichen Beanspruchungen hin nachgeprüft werden, die durch die "Peitsch"wirkung der bewegten Stangenmassen hervorgerufen werden.

Die Zylinder von 450 mm Durchmesser an aufwärts pflegt man im europäischen Lokomotivbau mit vorn durchgehender Kolbenstange zu versehen.

Die Gegengewichte

in den Treib- und Kuppelrädern dienen zum Ausgleich der bewegten Triebwerksmassen. Die umlaufenden Massen werden völlig ausgeglichen. Die hin- und hergehenden Massen gleicht man durch umlaufende Gegengewichte teilweise aus; der übliche Ausgleich schwankt zwischen 15 und 60 %. Schnellfahrende Zwillinglokomotiven mit Außenzylindern laufen erfahrungsgemäß hinreichend ruhig, wenn mindestens 30 % der hin- und hergehenden Massen ausgeglichen sind. Bei Drilling-Schnellzuglokomotiven sollten die hin- und hergehenden Massen der äußeren Triebwerke zu etwa 35 %, diejenigen des inneren Triebwerkes zu etwa 50 % ausgeglichen werden.

Die "freien Fliehkrüfte" sollen nach TV \S 69 (3) bei höchster Fahrgeschwindigkeit nicht mehr als 15 % des ruhenden Raddruckes betragen. Im Ausland erreichen die freien Fliehkräfte oft 40 % des ruhenden Raddruckes: In England gleicht man bei schweren Schmalspurlokomotiven bis zu 80 % der hin- und hergehenden Massen aus, in USA pflegt man etwa $^{1}/_{400}$ bis $^{1}/_{285}$ des Lokomotivgewichtes ohne Tender (d. h. 2,5 bis 3.5 %) an waagerecht bewegten Massen jeder Seite unausgeglichen zu lassen (vergleiche hierzu Zahlentafel 34, S. 203).

Das Gegengewicht im Radkörper erhalte die Form einer Sichel.

Die umlaufenden Massen müssen an derselben Achse ausgeglichen werden, an der sie angreifen. Der Ausgleich der hin- und hergehenden Massen kann auf sämtliche gekuppelten Achsen verteilt werden.

Ein vollkommener Massenausgleich ist mit Hilfe gegenläufiger Gewichte möglich (Meineke in ZVDI 1932, S. 202), praktisch aber noch nicht durchgeführt.

Die Gegengewichte der Zwillinglokomotive mit Außenzylindern

1. Ausgleich der umlaufenden Massen.

Zu den umlaufenden Massen rechnen die Radkurbeln (abzüglich der Speichen), die Treib- und Kuppelzapfen, die Kuppelstangen und $^3/_5$ der Treibstangengewichte, ferner die etwa auf der Achswelle sitzenden Hubscheiben, deren Winkelneigung besonders zu berücksichtigen ist.

Jedes umlaufende Gewicht G_u ist auf den Kurbelhalbmesser rzu beziehen; greift es im Abstand r' von Achsmitte an, so ist sein auf den Kurbelhalbmesser bezogenes Gewicht $\left(G_u \cdot \frac{r'}{r}\right)$.

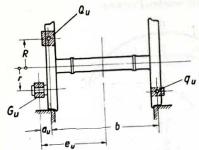


Bild 123 Ausgleich der umlaujenden Massen

Da die Gewichte in verschiedenen Ebenen umlaufen, müssen sie zu einem gedachten resultierenden umlaufenden Gewicht Gu_{res} zusammengesetzt werden. Laufen die einzelnen Gewichte Gu₁, Gu₂, Gu₃ usw. in Ebenen mit den Abständen e₁, e₂, e₃ usw. von der senkrechten Mittelebene der Lokomotive um, so beträgt die Entfernung des resultierenden umlaufenden Gewichtes von der Mittelebene der Lokomotive

$$e_{u} = \frac{G_{u_{1}} \cdot e_{1} + G_{u_{2}} \cdot e_{2} + G_{u_{3}} \cdot e_{3} + \cdot \cdot \cdot \cdot}{G_{u_{1}} + G_{u_{2}} + G_{u_{3}} + \cdot \cdot \cdot}$$

Hieraus ergibt sich der Abstand zwischen der Schwerlinie von $G_{u_{res}}$ und der Schwerlinie des Gegengewichts am gleichen Radkörper zu

 $au = eu - \frac{b}{2}$ (siche obiges Bild).

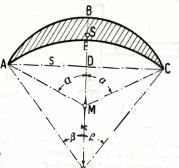
Liegt das auszugleichende resultierende Gewicht nicht in Radebene, so sind zu seinem Ausgleich zwei Gegengewichte nötig:

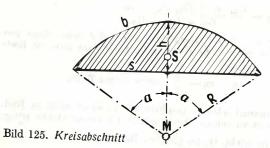
- l. Gegengewicht $Q_{\rm u}$ im gleichen Radkörper
- 2. Gegengewicht q_{u} im gegenüberliegenden Radkörper.

lst R=Abstand des Gegengewichtsschwerpunktes von Radmitte, so ist das erforderliche Gegengewicht im gleichen Radkörper

$$Q_u = G_u \cdot \frac{a_u + b}{b} \cdot \frac{r}{\underline{R}}$$

Gegengewichts-Formen




Bild 124. Sichel

Fläche F

= (Segment A B C D A - Segment A E C D A)

Moment der Fläche F = Segment A E C D A \times X

Schwerpunktsabstand MS = Moment der Fläche F geteilt durch Fläche F

Fläche
$$F = \frac{R^2}{2} \cdot \left(\frac{2a \cdot \pi}{180} - \sin 2a\right) = \frac{R (b-s) + sh}{2}$$
Schwerpunktsabstand $MS = \frac{s^3}{12 \cdot F}$

und das erforderliche Gegengewicht im gegenüberliegenden Radkörper

 $q_{u} = G_{u} \cdot \frac{a_{u}}{b} \cdot \frac{r}{R}$

Die beiden Gegengewichte Q_u und q_u des gleichen Radkörpers sind um 90° zueinander versetzt, so daß das für den Ausgleich der umlaufenden Massen erforderliche resultierende Gegengewicht sein muß:

 $\sqrt{\mathrm{Qu^2+qu^2}}$

2. Ausgleich der hin- und hergehenden Massen (Kolben, Kolbenstange, Kreuzkopf und $^2/_5$ des Treibstangengewichtes).

Die hin- und hergehenden Massen lassen sich durch umlaufende Gewichte nur teilweise ausgleichen. Sie greifen im Abstand e_h von der Mittelebene der Lokomotive an, folglich:

$$\mathbf{a_h} = \mathbf{e_h} - \frac{\mathbf{b}}{2}$$

Das resultierende Gewicht für den Ausgleich der hin- und hergehenden Massen wird auf möglichst viele gekuppelte Achsen verteilt. Läßt sich in einem Rade ein Gegengewichtsanteil Q_h für den Ausgleich der hin- und hergehenden Massen unterbringen, so entspricht dieser einer ausgeglichenen Masse von

$$\left(Q_{
m h}\cdotrac{
m b}{
m b+a_{
m h}}\cdotrac{
m R}{
m r}
ight)$$


woraus sich der prozentmäßige Anteil am Gesamtausgleich ergibt.

3. Das auszuführende Gegengewicht ergibt sich zu

$$Q = \sqrt{(Q_u + Q_h)^2 + (q_u + q_h)^2}$$

Üblicherweise eilt bei Vorwärtsfahrt die rechte Kurbel um 90° vor; es muß dann bei Vorwärtsfahrt das Gegengewicht des rechten Rades gegeniüber der durch Kurbel und Achsmitte gezogenen Mittellinie um den Winkel φ voreilen; das Gegengewicht des linken Rades eilt nach, es kann mithin für beide Radkörper derselben Achse das gleiche Modell verwendet werden (siehe umstehendes Bild 126).

Der Ablenkungswinkel q

Die Gegengewichte der Zwillinglokomotive mit Außenzylindern

4. Die Höchstgeschwindigkeit der Lokomotive wird (soweit sie nicht durch andere Vorschriften begrenzt ist) durch die zulässige Größe der freien Fliehkräfte festgelegt.

Ist G_h in kg der Anteil eines Gegengewichtes, der zum Ausgleichen der hin- und hergehenden Massen dient, so wirkt die größte freie Fliehkraft in der Radebene

$$\mathrm{mit}\ C_{max} = \frac{G_h}{g} \cdot R \cdot \omega_{max}^2 \quad \mathrm{in}\ kg.$$

Hieraus folgern
$$V_{max} = 1.8 \cdot \omega_{max} \cdot D$$

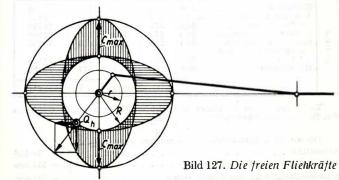
und $n_{max} = \frac{1000 \ V_{max}}{60 \ D \ \pi} = 16.7 \frac{V_{max}}{D \ \pi}$

mit Vmax = Höchstgeschwindigkeit in km/h

nmax = minutliche Drehzahl bei Höchstgeschwindigkeit

ω_{nax} = Winkelgeschwindigkeit bei V_{max}

D = Treibraddurchmesser in m


g = Erdbeschleunigung in m/sec2

R = Abstand des Gegengewichtsschwerpunktes von Radmitte in m

Die Gegengewichtsberechnungen aller Lokomotivbauarten gehen auf die an der Zwillingiokomotive mit Außenzylindern erläuterten Grundbegriffe zurück.

Es empflehlt sich, die Gegengewichtsberechnung von *Drillinglokomotiven* nach Najork durchzuführen (siehe Glasers Annalen 1915/II, S. 149). Dieses Verfahren hat neben einer allerdings nicht erheblichen Verminderung des Ausgleichgewichtes den konstruktiv willkommenen Vorzug, daß die Winkelneigung des Gegengewichtes von vornherein unabhängig von den sonstigen Verhältnissen mit 30° gegeben ist.

Unter "Auswuchten" eines Radsatzes versteht man ein rohes Nachprüfen der Gegengewichte am fertiggestellten Radsatz.

- mit den Massenkräften der hin- und hergehenden Gewichte im Gleichgewicht befindliche Fliehkräfte
- = freie Fliehkräfte

Zahlenbeispiel

Gegengewichtsberechnung für eine vierfach gekuppelte Lokomotive mit Außenzylindern nach nebenstehender Skizze 128.

I. Ausgleich der umlaufenden Gewichte

In a	Hashington-livingle for Your	Auszugl. Gewicht kg	Schwerp Abst. von Radmitte mm	kreis bez.	Abstand v. Mittel- ebene der Lok. mm	Moment bezüg- lich Mittelebene der Lok. mmkg
hinteres rad	Kurbelarm	$\sim^{24.5}_{2.0}$	265 250	23.6 1,8	540 533	12 744 959
Vorderes u. hint Kuppelrad	halb Nabe) 0,53 Kuppelstange	7,0 18,6	275 275	7,0 18,6	575 650	$\frac{4025}{12090}$
Vorde	Patrick articipative		Gu =	= 51,0	М	= 29818
Kuppelrad	Kurbelarm	$\sim^{24.5}_{\substack{2.0\\7.0\\16.4\\31.6}}$	265 250 275 275 275	23,6 1,8 7,0 16,4 31,6	540 533 575 650 650	12 744 959 4 025 10 660 20 540
6,1	phase rates present hi		Gu =	= 80,4	M	= 48928
Treibrad	Kurbelarm	55,0 3,0 46,8 34,4 16,4 25,0 20,0	278 225 275 275 275 275 275	55,8 2,5 46,8 34,4 16,4 25,0 13,1	540 533 785 650 650 725 877	30 132 1 333 36 738 22 360 10 660 18 125 11 489
			Gu =	194,0	. M =	= 130 837

Entfernung des resultierenden auszugleichenden umlaufenden Gewichtes von Mittelebene der Lokomotive $e_u = \frac{M}{G_{\rm ex}}$

Vorderes und hinteres Kuppelrad:

$$e_{\mathbf{u}} = \frac{29818}{51} = 585 \text{ mm}$$
 $a_{\mathbf{u}} = e_{\mathbf{u}} - \frac{b}{2} = 585 - 535 = 50 \text{ mm}$

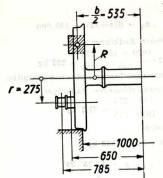


Bild 128

Maße zum Zahlenbeispiel

Treibrad-Durchmesser 1050 mm

Dann erforderliches Gegengewicht im gleichen Radkörper

$$Q_{\rm u} = G_{\rm u} \cdot \frac{b + a_{\rm u}}{b} \cdot \frac{r}{R} = 51 \cdot \frac{1070 + 50}{1070} \cdot \frac{275}{315} = 47 \text{ kg}$$

erforderliches Gegengewicht im gegenüberliegenden Radkörper

$$q_u = G_u \cdot \frac{a_u}{b} \cdot \frac{r}{R} = 51 \cdot \frac{50}{1070} \cdot \frac{275}{315} = 2.1 \text{ kg}$$

resultierendes Gegengewicht ~ 48 kg

tg
$$\varphi = \frac{a_{11}}{a_{11} + b} = \frac{50}{1070} \dots \varphi = 2^{\circ} 40' 32''$$

Zweites Kuppelrad:

$$e_{\mathbf{u}} = \frac{48928}{80.6} = 607 \text{ mm} \qquad a_{\mathbf{u}} = 607 - 535 = 72 \text{ mm}$$

$$\mathbf{Q}_{\mathbf{u}} = 80.6 \cdot \frac{1070 + 72}{1070} \cdot \frac{275}{315} = 76 \text{ kg}$$

$$\mathbf{q}_{\mathbf{u}} = 80.6 \cdot \frac{72}{1070} \cdot \frac{72}{315} = 4.8 \text{ kg}$$

resultierendes Gegengewicht ~ 77 kg

tg
$$\varphi = \frac{72}{1142} \dots \varphi = 3^{\circ} 36' 27''$$

Gewählt für alle Kuppelräder $\varphi=3^{\circ}$.

$$e_{\rm u} = \frac{130\,837}{194} = 674 \ {\rm mm} \ \dots \ a_{\rm u} = 674 - 535 = 139 \ {\rm mm}$$

Erforderliches Gegengewicht im gleichen Radkörper

$$\begin{array}{lll} \textbf{Q}_{II} = \textbf{G}_{II} & \frac{\textbf{b} + \textbf{a}_{II}}{\textbf{b}} & \frac{\textbf{r}}{\textbf{R}} = 194 & \frac{1070 + 139}{1070} & \frac{275}{255} = \textbf{237} \text{ kg} \\ \textbf{a} = 255 \text{mm} = \text{Schwerpunktsabstand des Gross-1} & \textbf{3} & \textbf{3} & \textbf{3} & \textbf{3} & \textbf{3} \\ \textbf{a} = 255 \text{mm} & \textbf{m} \\ \textbf{m} & \textbf{m} \\ \textbf{m} & \textbf{m} \\ \textbf{m} & \textbf{m} \\ \textbf{m} & \textbf{m} \\ \textbf{m} & \textbf{m} \\ \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} \\ \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} \\ \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} \\ \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} \\ \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} \\ \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} \\ \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} \\ \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} \\ \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} \\ \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} \\ \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} \\ \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} \\ \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} \\ \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} \\ \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} \\ \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} \\ \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} \\ \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} \\ \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} \\ \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} \\ \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} \\ \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} \\ \textbf{m} & \textbf{m} & \textbf{m} \\ \textbf{m} & \textbf{m} & \textbf{m} & \textbf{m} \\ \textbf{m} & \textbf{$$

(hierbei R=255 mm=Schwerpunktsabstand des Gegengewichts von Radmitte).

Erforderliches Gegengewicht im gegenüberliegenden Radkörper

$$q_u = G_u \cdot \frac{a_u}{b} \cdot \frac{r}{R} = 194 \cdot \frac{139}{1070} \cdot \frac{275}{255} = 27,2 \text{ kg}$$

Tatsüchlich auszuführendes Gegengewicht:

$$\sqrt{Q_{u}^{2} + q_{u}^{3}} = \sqrt{56169 + 740} = 239 \text{ kg}$$

$$tg \ \varphi = \frac{a_{u}}{a_{u} + b} = \frac{139}{1209} \cdot \cdot \cdot \cdot \cdot \varphi = 6^{\circ} 33' 30''$$

Ausführung des Treibrad-Gegengewichtes (R = 255 mm): gesamte Sichelfläche

 $f_8 = 17.8 \text{ dm}^2$ in beiden Fällen gleicher Sichelfläche des Bleiausgusses $f_{hl} = 12.2 \text{ dm}^2$ Schwerpunktsabstand,

Bei 20 mm Stärke der Seitenwände des Stahlgußkörpers ergibt sich die Breite b des Gegengewichtes aus

$$239 = f_8 \cdot b \cdot 7.86 + f_{bi} \cdot (b-0.4) \cdot (11.25 - 7.86)$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad$$

Ausgeführt b = 140 mm

Am Treibrad nur umlaufende Gewichte ausgeglichen:

II. Ausgleich der hin- und hergehenden Gewichte

	Gewicht kg	Abstand von Lokomotivmitte mm	Moment mmkg
Kolben und Stange Kreuzkopf 0,4 Treibstange	100,5 103,0 31,2		•
	G = 234.7	785	184 240

Dann ist $e_h = \frac{184240}{234.7} = 785 \text{ mm}$ $a_h = 785 - 535 = 250 \text{ mm}$

Es sollen bedingungsgemäß 50 % der hin- und hergehenden Gewichte ausgeglichen werden. Bei einer angenommenen Breite von b = 130 mm beträgt das Gegengewicht $\sim 10.0 \cdot 1.3 \cdot 7.86 = 102$ kg. Zum Ausgleichen der hin- und hergehenden Gewichte stehen demnach zur Verfügung:

Also Anteil der Gegengewichte zum Ansgleichen der hin- und hergehenden Gewichte GH = 133 kg.

Dieser entspricht einer ausgeglichenen Masse von

etwa
$$Q_h \frac{b}{b+a_h} \cdot \frac{R}{r} = 133 \cdot \frac{1070}{1070+250} \cdot \frac{315}{275} = 123 \text{ kg}$$

d. h. ~ 53 % der hin- und hergehenden Gewichte.

III. Die freien Fliehkräfte sind am größten bei 1. u. 4. Kuppelachse.

$$\begin{array}{c} \text{Bel H\"ochstgeschwindigkeit V} = 45 \text{ km/h ist} \\ n = \frac{45\,000}{1.05\,\pi\,60} = 228 \text{ Umdr/min} \dots \omega = \frac{V}{1.8\,D} = \frac{45}{1.8\,\cdot 1.05} = 23.7 \\ C_{\text{max}} = m \cdot R \cdot \omega^2 = \frac{54}{9.81} \cdot 0.315 \cdot 23.7^2 = 970 \text{ kg}. \end{array}$$

Das sind 18.4 % des ruhenden Raddruckes von 5250 kg.

Sind nur 15 % erwünscht, so wird

$$C_{\text{max}} = 790 \text{ kg} \dots \omega = \sqrt{\frac{790 \cdot 9.81}{54 \cdot 0.315}} = \sqrt{458} = 21.4$$

sulässig demnach $V_{\text{max}} = 1.8 \cdot 1.05 \cdot 21.4 \sim 41 \text{ km/h}.$

Zulässig demnach $V_{max} = 1.8 \cdot 1.05 \cdot 21.4 \sim 41 \text{ km/h}$.

Verhältnis der unausgeglichenen hin- und hergehenden Gewichte zum Gesamtlokomotivgewicht neuzeitlicher USA-Lokomotiven bei Höchstgeschwindigkeit

Zahlentafel 34. Nach Johnson: "The steam locomotive", New York 1944, S. 268,

Bahnverwaltung	N.Y.N. H.& H.	A. C. L.	N.Y.C.	N.Y.C.	C.M. St P. & P.
Achsanordnung und Klasse	4-6-4	4-8-4	4-6-4	4-6-4	4-4-2
Gesamt-Lokomotivgewicht in lbs.	363 300	460270	360 000	350 000	286 000
Unausgeglichene hin- und her- gehende Gewichte einer jeden Seite in 1bs.	1074	1 724	630	1 239	692
Verhältnis der unausgeglichenen hin- nnd hergehenden Gewichte zum Lokomotivgewicht		$\frac{1}{266}$	$\frac{1}{571}$	1 283	$\frac{1}{413}$
Unausgeglichenes Gewicht auf 1000 lbs. Lokomotivgewicht in lbs	2,94	3,75	1,75	3,54	2,42

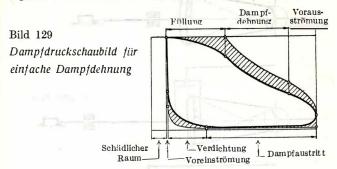
Die Steuerung

besteht aus der *inneren* Steuerung, unter der man im wesentlichen den Dampfverteiler versteht, und aus der $\ddot{a}u\beta$ eren Steuerung, die dem Antrieb des Dampfverteilers dient.

Der Dampfverteiler wird bei der überwiegenden Anzahl der neueren Lokomotiven als Kolbenschieber mit einfacher, innerer Einströmung des Dampfes ausgebildet. Bei Ventilsteuerungen geht man mit der Ventilbeschleunigung bis zu etwa 580 m/sec². Der Antrieb des Dampfverteilers erfolgt durch Zusammensetzen der Bewegungen zweier Antriebspunkte der äußeren Steuerung, in selteneren Fällen (bei Anwendung von Ellipsenlenkern oder von umlaufenden Nocken) von nur einem Antriebspunkt aus.

Steuerungen, bei denen der Dampfauslaß in zwangläufiger Abhängigkeit von der Verstellung der Füllung steht, leiden bei kleineren Füllungen an übermäßig hoher Vorausströmung und Verdichtung. Anzustreben ist daher (bis zu einer gewissen Grenze!) Unabhängigkeit der Verstellung des Dampfauslasses von der Veränderung des Dampfeinlasses, wie sie beispielsweise bei der Caprotti-Ventilsteuerung verwirklicht ist. — Der schädliche Raum im Dampfzylinder wird so knappwie möglich bemessen; er beträgt bei Kolbenschiebersteuerungen etwa 10 %.

Die Damp/geschwindigkeit im Schieberspiegel von Kolbenschieber-Steuerungen kann angenommen werden zu $v_m = 300^{\rm m}/{\rm sec}$ bezogen auf den bei 20 % Füllung und mittlerer Kolbengeschwindigkeit vorhandenen Einström-Dampfquerschnitt. Die zugehörigen minutlichen Treibrad-Drehzahlen ermitteln sich nach der Kontinuitätsgleichung zu


$$n = \frac{30}{s} \cdot \frac{300 f}{F} = \frac{9000 f}{s F}$$

wenn s = Kolbenhub in m F = Kolbenquerschnitt in cm² f = Einström-Dampfquerschnitt in cm² bei mittlerer Kolbengeschwindigkeit für 20 % Füllung.

Die entsprechende Fahrges chwindig keit beträgt mit D = Treibraddurchmesser in m

$$V = \frac{60 D \pi n}{1000} \text{ in km/h.}$$

Dieses V stellt gleichzeitig die Höchstgeschwindigkeit dar, wenn mit 20 % als geringster Füllung gefahren werden sollte (vgl. S. 214 und Zahlentafeln 77 und 78, S. 398/399).

Die schrafflerte Fläche zeigt die durch Drosselung und Abkühlung entstandenen Verluste.

Dampfdehnung und Verdichtung verlaufen nach dem Ausdruck

Die kennzeichnenden Punkte des Dampfdruckschaubildes werden durch die Ausströmdeckung i, die Einströmdeckung e und das lineare Voreilen v bestimmt; sie werden jedoch nicht von den tatsächlichen Abmessungen dieser Größen, sondern vom Verhältnis dieser Maße zueinander beeinflußt (s. Zahlentafel 35, S. 214 und Bilder S. 217).

Die bekanntesten Lokomotivsteuerungen

a) für gemeinsam betätigten Dampfeinlaß und -auslaß

1. Die Stephenson-Steuerung (Bild 130 a), 1842 von Howe, Vorschlosser bei Rob. Stephenson, erfunden, zeichnet sich durch kleinste Zahl an Gelenken und kurze Baußinge aus, erfordert jedoch große Bauhöhe und läßt sich nicht in einer senkrechten Ebene ausbilden. Antrieb durch 2 Hubscheiben. Schwinge gekrümmt. Beim Umsteuern wird die Schwinge gehoben oder gesenkt. Großer

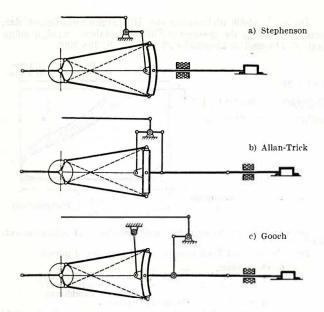


Bild 130. Schwingensteuerungen mit zwei Exzentern

Einfluß des Federspiels auf die Dampfverteilung, da Schieberebene geneigt zur Zylinderachse. Scheitellinie gekriimmt; das lineare Voreilen nimmt bei gekreuzten Stangen mit zunehmender Füllung zu, bei offenen mit zunehmender Füllung ab. Die Stephenson-Steuerung eignet sich bei Verwendung offener Stangen besonders für Lokomotiven mit hohen Drehzahlen, da die Scheitellinie ziemlich scharf gekrimmt ist.

2. Die Allan-Trick-Steuerung (Bild oben), 1855 von dem Engländer Alex Allan, unabhängig hiervon etwas später von dem Deutschen Trick, Ingenieur bei Kessler-Eßlingen, erfunden, beansprucht große Baulänge, aber mißige Bauhöhe. Antrieb durch 2 Hubscheiben. Schwinge gerade (einfache Herstellung!). Beim Umsteuern werden die Schwinge und die Schieberschubstange gleichzeitig gehoben bzw. gesenkt. Schieberebene geneigt zur Zylinderachse, daher großer Einfluß des Federspiels auf die Dampfverteilung. Scheitelkurve flacher als betephenson, daher eignet sich die Allan-Steuerung bei Verwendung gekreuzter Stangen besonders für langsam fahrende Lokomotiven (geringere Drehzahlen).

- 3. Bei der Gooch-Steuerung (Bild 130 c) wird durch Heben und Senken der Schieberschubstange umgesteuert. Schwinge gekrümmt, Scheitelkurve geradlinig, daher gleichbleibendes lineares Voreilen. Erforderliche Baulänge größer, Bauhöhe geringer als bei Stephenson oder Allan. Dampfverteilung unregelmäßiger als bei den vorgenannten Steuerungen, daher nur geringe Verbreitung.
- 4. Die Heusinger-Steuerung. Gegenwärtig die verbreitetste Lokomotivsteuerung, bei Lokomotiven aller Gattungen angewendet. Näheres auf Seite 212.
- 5. Die Heusinger-Steuerung der Bauart Helmholtz-Krau β besitzt gerade Schwinge.
- 6. Die Baker-Steuerung (Seite 210) unterscheidet sich von Heusinger lediglich dadurch, daß die Schwinge durch einen Winkelhebel ersetzt ist, an dem eine Lenkstange schwingt. Der Winkelhebel ist zwischen Schieberschubstange und Lenkstange eingeschaltet. Die Steuerung ist vielteiliger und baut sich breiter als die Heusinger-Steuerung.
- Die Winkelhebel-Steuerung von Gölsdorf unterscheidet sich dadurch von Baker, daß der Winkelhebel zwischen Schwingenstange und Lenkstange angeordnet ist.
- 8. Bei der Kingan-Ripken-Steuerung greift die Lenkerstange nicht am Kreuzkopf, sondern an einem Punkt der Treibstange an.
- 9. Die Heusinger-Joy-Steuerung treibt die Schwingenstange nicht durch eine Gegenkurbel, sondern von einem Punkt der Treibstange aus an.
- 10. Die Joy-Steuerung (Seite 209) (erfunden von dem englischen Maschinenmeister und späteren Zivillingenieur David Joy, geb. 3. März 1825 in Leeds, gest. 14. März 1903 in Hampstead) wird von einem Punkt der Treibstange aus angetrieben; sie beansprucht geringe Baulänge und große Bauhöhe und baut sich in einer senkrechten Ebene auf. Die Schieberschubstange wird oben mittels Stein in einem durch den Steuerhebel verstellbaren Kreisbogenlenker geführt, ihr unterer Gelenkpunkt bewegt sich mit Hilfe des angenäherten Ellipsenlenkers auf einer ellipsenähnlichen Bahn. Scheitellinie gerade, Gute Dampfverteilung, geringes Gewicht und gute Zugänglichkeit aller Teile sind die Vorzüge der Joy-Steuerung. Ungünstig ist die zusätzliche Biegungsbeanspruchung der Treibstange durch das Steuerungsgetriebe.

11. Die Young-Steuerung (Seite 211) wird von zwei geradlinig bewegten Punkten angetrieben.

Der "diesseitige" Kreuzkopf setzt mit Hilfe der Lenkerstange 1 die Schwinge 2 in Bewegung, welche ihrerseits vermittels der Schwingenstange 3 den Voreilhebel 4 antreibt. Am Voreilhebel greift die Schieberstange 5 an. Der Voreilhebel schwingt um einen am Hebel 6 befestigten Zapfen, dessen Mitte bei Nullfüllung in die Achse AB (in senkrechter Ebene über der Welle CD) fällt. Wird durch die Aufwerfhebel 7 die Steuerung ausgelegt, so wird durch die "jenseitige" Schieberschubstange 8 der Hebel 9 verdreht, welcher seine Bewegung mittels der die Welle CD zylindrisch umfassenden Welle 10 dem Hebel 6 mitteilt. Der Hebel schwingt nunmehr entsprechend der Bewegung des "jenseitigen" Schwingensteines um die Achse CD. Der Voreilhebel 4 schwingt um einen Punkt, welcher sich seinerseits auf einem Kreisbogen mit der Länge des Hebels 6 als Halbmesser um die Achse CD hin und her bewegt. Die gewünschte Bewegung der Schieberstange 5 ist somit ermöglicht. Die Eigenart der Anordnung erfordert es, daß beim Verlegen der Steuerung die beiden Schwingensteine sich in entgegengesetzter Richtung bewegen.

Die Young-Steuerung ist äußerst vielteilig. Steuerungstechnisch entspricht sie der Heusinger-Steuerung, übertrifft diese jedoch durch bedeutend rascheres Öffnen und Schließen des Schlebers und ermöglicht unter sonst gleichen Verhältnissen höhere Füllungen. Sie elgnet sich daher besonders für Lokomotiven mit großen Zylinderabmessungen (z. B. hat sie an Lokomotiven der Union-Pacific und der Chicago & NorthWestern Bahn Verwendung gefunden).

12. Lentz-Schwingensteuerung. Die 4 Ventile (2 für Einlaß, 2 für Auslaß) elnes Zylinders werden durch eine gemeinsame Schwingwelle mit auf dieser starr aufgesetzten Schwingnocken gesteuert. Äußerer Antrieb zumeist durch eine übliche Heusinger-Steuerung.

b) für unabhängige Verstellung von Dampfelnlaß und -auslaß

- 13. Rateau-Lentz-Steuerung. Ventilantrieb durch umlaufende Nocken, für jede Filllung ein besonderer Nocken, der durch Achsialverschiebung der Nockenwelle in Eingriff gebracht wird. Es sind belspielsweise ausgeführt 5 Füllungsstufen für vorwärts, 2 für rückwärts, 1 für Leerlauf.
- 14. Die Renaud-Steuerung kennzeichnet sich durch umlaufende Steuerwelle fistetige Füllungsänderung. Zu jedem Ventil gehört nur eine Nockenscheibe, deren Hubzeit vom Fahrer innerhalb gewisser Grenzen beeinflußt werden kann.
- 15. Caprotti sieht für jede Zyllnderselte 3 auf einer umlaufenden Steuerwelle sitzende Nockenscheiben vor: eine zum Öffnen des Dampfeinlasses, eine zum Betätigen des Dampfenlasses, eine zum Betätigen des Dampfauslaßventils. Die Vorausströmung ist für alle Füllungen gleichbleibend, ebenso die Verdichtung, daher größere Völligkeit der Dampfdruckschaubilder. Die Füllung wird durch Verdrehen der beiden lose auf der Steuerwelle angeordneten Einlaß-Nockenscheiben verändert. Kleinste wirtschaftliche Füllung etwa 5 %.
- 16. Meier-Mattern steuert die Ventile mit Drucköl und erreicht kleinste Füllungen von 2.5 %.

Die Ventilsteuerung (Belspiele oben) kennzeichnet sich durch

daher völligeres Dampfdruck-

Schaubild

Wegfall von Lässigkeitsverlusten geringere Drosselverluste kleinen schädlichen Raum Ermöglichung kleinster Füllungen

Unabhängigkeit von Dampfein- und Dampfauslaß Wegfall von Leerlaufeinrichtungen

geringen Schmierölverbrauch

Unempfindlichkeit gegen hohe Überhitzung.

Man pflegt gegenüber Kolbenschiebersteuerung eine Dampf- und Brennstoffersparnis von etwa 10 % anzunehmen, bezogen auf die übliche Zuteilung im Betriebe. Gesamtwirtschaftlich ist die Ersparnis zumeist jedoch nicht so hoch, daß sich die Ventilsteuerung bisher in größerem Umfange hätte durchsetzen können.

Auf kleinste Fiillungen und kleinen schädllehen Raum legt der Betrieb in Rücksicht auf den ruhigen Gang der Lokomotive weniger Wert. Bei Dampfmotoren können diese Eigenarten der Ventilsteuerung vorteilhaft zur Geltung kommen, sofern die zu verarbeitenden Dampfvolumina eine gewisse Grenze nicht überschreiten. Im Bereich größter Dampfvolumina werden Ventilwege und Ventilabmessungen erforderlich, die konstruktiv nicht zu beherrschen sind. Für schnellaufende Dampfmaschinen hat sich die Stephenson-Schiebersteuerung (Bild 130 a) als geeignet erwiesen.

Erläuterung auf Seite 207 Bild 131. Beispiel einer JOY-Steuerung

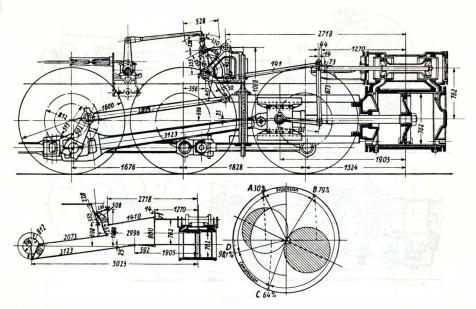
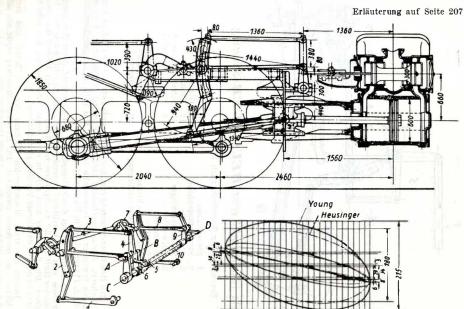



Bild 132. Beispiel einer BAKER-Steuerung

Erläuterung auf Seite 207

Bild 133. Beispiel einer YOUNG-Steuerung

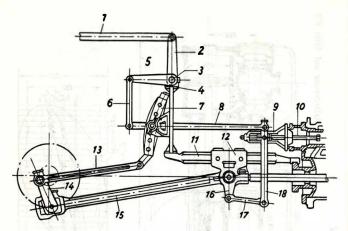


Bild 134. Beispiel einer HEUSINGER-Steuerung

Benennung der Einzelteile nach LON 1:

1	Steuerstange	10	Schleberstange
2	Steuerstangenhebel	. 11	Gleitbahn
3	Steuerwelle	12	Kreuzkopf
4	Steuerwellenlager	13	Schwingenstang
5	Aufwerfhebel	14	Schwingenkurbe
6	Hängeeisen	15	Treibstange
7	Schwinge	16	Lenkeransatz
8	Schleberschubstange	17	Lenkerstange
9	Schieberstangenführung	18	Voreilhebel

Die **Heusinger-Steuerung** (vgl. Seite 207) wurde 1844 von dem Belgier Egide Malschaert, davon unabhängig 1849 von Edmund Heusinger v. Waldegg, damals Ingenieur der Taunusbahn (geb. 12. Mai 1817 in Langenschwalbach, gest. 2. Februar 1886 in Hannover) erfunden.

Der Antrieb erfolgt durch Gegenkurbel und Kreuzkopf, deren Bewegungseinflüsse sich im Voreilhebel vereinigen. Die Schwinge ist gekrümmt. Der Schieber läuft parallel zur Zylinderachse, daher geringster Einfluß des Federspieles. Die Steuerung baut sich in *einer* senkrechten Ebene. Die Scheitelkurve ist gerade, das lineare Voreilen gleichbleibend.

Infolge der stark übersetzenden Wirkung des Voreilhebels sind große Schieberwege unschwer erreichbar. Die Heusinger-Steuerung ergibt von allen-Schwingenumsteuerungen die gleichmäßigste Dampfverteilung. Voraussetzung hierzu ist die Erfüllung folgender Grundsätze: Die Schieberschubstange möglichst lang, die Schwinge mithin möglichst flach gekrümmt. Schieberschubstange in Mittelstellung parallel zur Zylinderachse; sie sollte zwecks Verminderung des Steinspringens bei Schlepptenderlokomotiven in einem Hüngeeisen, bei Tenderlokomotiven in Kuhnscher Schleife gelagert sein. Das "Horn" der Schwinge soll so festgelegt sein, daß sie bei Kolbentotlage in Mittelstellung steht und nach beiden Seiten gleich große Winkelausschläuge beschreibt. Lenkerstange möglichst lang: die Strecke. um welche ihr Angriffspunkt am Voreilhebel in senkrechter Richtung sich hebt bzw. senkt, soll durch eine Parallele zur Zylinderachse halbiert werden, welche durch den Angriffspunkt der Lenkerstange am Kreuzkopf gezogen ist. Der Winkelauschläg der Schwinge und derjenige des Voreilhebels soll möglichst nicht 25°, keinesfalls 30° überschreiten. Bei der Schwingenstange sind kurze Länge und stark geneigte Lage nicht von Nachteil; sie wirken günstig auf den Füllungsausgleich ein.

Eine Vereinheitlichung der Kolbenschieber für die Heusinger-Steuerung bietet die Möglichkeit, eine allgemein gültige Übersicht über die in Rücksicht auf die innere Steuerung zuzulassenden Höchstgeschwindigkeiten zu geben. Bemißt man die Schieber nach Zahlentafel 35, Seite 214, so ergeben sich die Werte der Zahlentafeln S. 398/99; werden diese unterschritten, so fallen die Dampfdruckschaubilder völliger aus, als sie auf Seite 217 dargestellt sind; werden sie überschritten, so ergeben sich kleinere Arbeitsilächen.

Dann sind die mittleren Kolbendrücke Pm	für $Naeta dampf$	für Heißdampf
bei 20 % Füllung	. 3,2 atii	2,82 atii
bei günstigster Füllung	. 3,7 atii	3,7 atü
bei 40 % Füllung		6,8 atii
bei 60 % Füllung		9,4 atü
bei 80 % Füllung	. 11,15 atii	11,1 atii

Über den "günstigsten" mittleren Kolbendruck slehe auch S. 135.

Die günstigste Füllung liegt

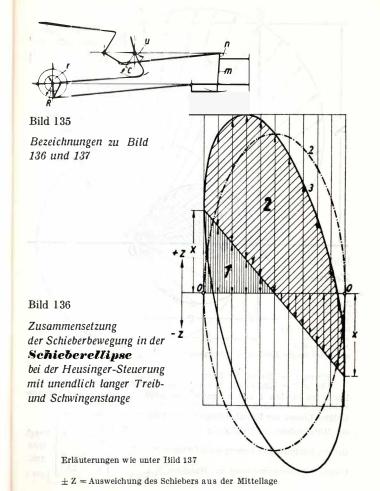
für	Naßdampf					8		:			ş	*	(etv	va	S	unter	20	%
fiir	Heißdampf	bis	3	50	۰.	3		ě									über	20	%
für	Heißdampf	üb	\mathbf{er}	35	50°												um	30	%

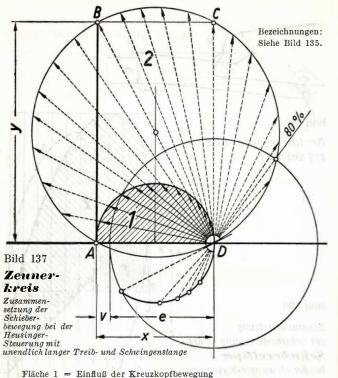
Die Einheitsschieber der Deutschen Bundesbahn haben folgende kennzeichnende Werte in mm:

Durchmesser	$d_{\mathbf{k}}$		180	220	300	b i
Einströmdeckung	е.		38	38	38	[50]
Ausströmdeckung	; J	12 	2	2	2	11
Ausströmdeckung	, (20 atii	8-:-10	8 ÷ 10	8÷10	
Lineares Voreilen	v		5	5	5	[8]

[]-Maße gelten für Schnellfahrlokomotiven der Reihen 05 und 61.

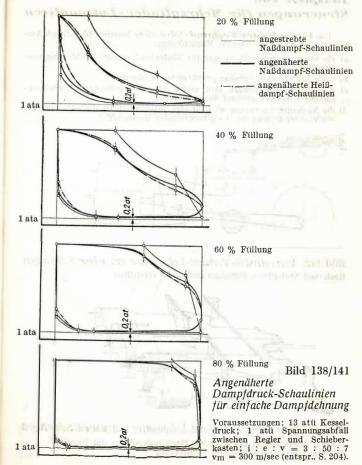
Über Heusinger-Steuerungen für Drei- und Vierzylinder-Lokomotiven siehe Seite 218 und 219.


Vereinheitlichung der inneren Steuerung in Abhängigkeit von Treibrad-Durchmesser und Kolbenhub


Beispiel einer Heusinger-Steuerung mit i: e: v = 3:50:7

Zahlentafel 35

	Harring Treibrad O D	g Kolbenhub s		Kolb	ensch	ieber		1	Berechnungs	sgrößen
Gruppe			g Durchmesser dk	E Einström- E deckung e	B Ausström- B deckung i	E Kanalbreite b	g Kanallänge l	E Lineares Vor-	Einström- kanaleröff- nung bei mittl. Kolben- geschw.für 20 % Füllung b ₂₀ mm	Einströmdampfquerschn, bei mittl. Kolbengeschw. für 20 % Füllung fm20 cm²
I	[550] 600 [650] 700 [750]	300	100	17	1	24	220	2,33	2,66	5,88
II	800 [850] 900 [950]	400	150	25	1,5	36	330	3.5	4	13,2
Ш	1000 [1050] 1100 1200 1300	500	200	33,5	2	48	440	4,66	5,35	23.6
IV	1400 1500 1600 1700	600	250 (300) Die Kl	41.5	2,5	60 e gelte	550 (662) n für Zy		6,68	36,8 (44,3) a aufwärts
v	1800 1900 2000 [2100] [2200] 2300		250 (300) Die Kl	50 amme	3 rwert	72	550 (662) nfür Zy	7,0	8,0	44.0 (53.0) aufwärts
1	2	3	4	5	6	7	8	9	10	11


Die in [] Klammern gesetzteu Treibraddurchmesser \boldsymbol{sind} möglichst zu vermeiden.

Fläche 1 = Einfluß der Kreuzkopfbewegung Fläche 2 = Einfluß der Bewegung der Schwingenkurbel Die in den Flächen 1 und 2 dargestellten Einflüsse addieren sich zur Ausweichung des Schiebers aus der Mittellage (= ½ Schieberhub). Größter Einfluß der Kreuzkopfbewegung = Schieberausweichung aus

der Mittelstellung bei Nullfüllung
$$X=R-\frac{n}{m+n}$$
 Größter Einfluß der Bewegung der Schwingenkurbel $Y=r-\frac{u}{c}-\frac{m}{m+n}$ Bild Größte Schieberausweichung aus Mittellage $r_{sch_{\max}}=\sqrt{X^2+Y^2}$

Beispiele von Steuerungen für Mehrzylinder-Lokomotiven

Für Vierzylinder-Verbund-Lokomotiven bestehen hinsichtlich Ausbildung der Steuerung folgende Möglichkeiten:

- a) die Steuerungen für Hoch- und für Niederdruck werden unabhängig voneinander betätigt
- b) beide Zylinderpaare erhalten jeweils gleiche Fiillungen
- c) die Viederdruckfüllungen sind größer als die zugehörigen Hochdruckfüllungen, nehmen aber mit diesen zu und ab
- d) die Niederdrucksteuerung wird für eine unveränderliche Höchstfüllung bei wechselnder Füllung der Hochdruckzylinder durchgebildet.

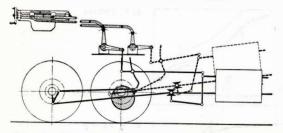


Bild 142. Vierzylinder-Verbund-Lokomotive mit vier Schwingen Hoch- und Niederdruck-Füllungen zueinander verstellbar

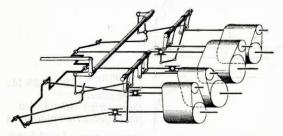
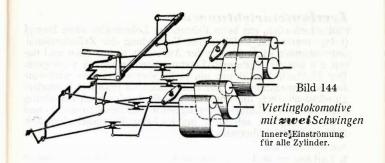
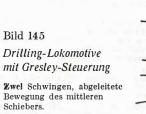




Bild 143. Vierzylinder-Verbund-Lokomotive mit zwei Schwingen Gleiche Füllungen für alle Zylinder, Hochdruckzylinder mit innerer, Niederdruckzylinder mit äußerer Einströmung

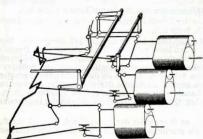


Bild 146
DrillingLokomotive mit
dref Schwingen

Sonderfall: Zwei Schwingen auf einer Seite.

Bei **Drilling-**Lokomotiven wird vielfach die Bewegung des mittleren Schiebers von denjenigen der beiden äußeren Schieber abgeleitet. Hierbei können sich Ungenauigkeiten in den äußeren Steuerungen zu fühlbaren Fehlern in der Bewegung des inneren Schiebers verdichten. Dieser Nachteil entfällt, wenn auch für den mittleren Schieber ein besonderer Steuerungsantrieb vorgesehen wird.

Leerlaufeinrichtungen

sind erforderlich, um beim Fahren der Lokomotive ohne Dampf (beispielsweise im Gefälle) eine Verbindung der Zylinderräume untereinander wie auch mit der Außenluft herzustellen und damit die negative ("Pump"-)Leistung der Kolben zu verringern. Der Flachschieber klappt ab, stellt also selbst eine wirksame Leerlaufeinrichtung dar. Der Kolbenschieber erfordert besondere Druckausgleicher, die von Hand bedient oder auch selbsttätig sein können. Die Luftgeschwindigkeit in den Druckausgleich- und Luftsaugeventilen soll auch bei höchster Fahrgeschwindigkeit 300 m/sec nicht überschreiten.

Von Bedeutung sind:

- Vorrichtungen, die beim Leerlauf der Lokomotive eine Öffnung im Dampfeinströmrohr freigeben und somit die Pumparbeit verringern, solange der Schieber den Dampfeinströmkanal ganz oder teilweise freilegt: Luftsaugeventite.
- 2. Vorrichtungen, die beim Leerlauf der Lokomotive selbsttätig oder von Hand eine Verbindung zwischen den Zylinderräumen vor und hinter dem Kolben herstellen: Umlaufvorrichtungen. Diese sind wirksamer als die Luftsaugeventile, weil die Zylinderräume unabhängig von der Schieberstellung in ständige Verbindung miteinander gebracht werden können.
- 3. Vorrichtungen, die beim Leerlauf der Lokomotive die Lage der steuernden Kanten selbstfätig derart verändern, daß die Dampfkanüle ganz oder teilweise geöffnet bleiben: Druckausgleich-Schieber. Zusätzliche Luftsauge- und Umlaufvorrichtungen sind hier entbehrlich.

Beispiele: Der Karl Schulz-Schieber wie auch der Müller-Schieber geben eine mit dem Schieberhub veränderliche Weite der Dampfkanäle frei. Der Troftmoff-Schieber legt die Dampfkanäle völlig frei.

Elnen Anhalt für die Größe der Leerlaufleistungen bei den einzelnen Leerlaufeinrichtungen gibt Bild 150, Seite 223.

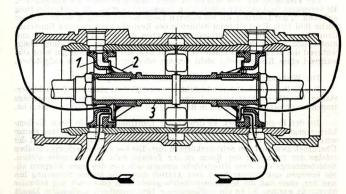
Der Karl Schulz-(Nicolai-)Schieber ist in Bild 147 dargestellt. Der Schieberkörper ist derart geteilt, daß beim Schließen des Reglers die den Dampfeintritt steuernde Kante durch Federkraft nach innen geschoben wird, während die den Dampfaustritt steuernde Kante ihre ursprüngliche Lage zur Schieberstange beibehält. Beide Teile des Schiebers nehmen an den Hubbewegungen der Schieberstange teil. Infolge des großen Abstandes der voneinander getrennten Schieberteile sind die Dampfkanäle während des Leerlaufes ständig geöffnet, wenn auch nicht mit ihrem vollen Querschnitt. Die Leerlaufleistung liegt etwas höher als bei Trofimoff.

Wird Frischdampf gegeben, so überwindet der Dampfdruck die Federkraft, und die Schieberteile wirken als geschlossenes Ganzes wie ein Kolbenschieber üblicher Bauart.

Der Müller-Schieber (Bild 148) ist insofern eine Fortentwicklung der Bauart Nicolai, als der Schieberkörper nicht am Umfang, sondern im Fuß geteilt ist. Die steuernden Kanten am gleichen Schieberkörper verändern somit ihre Lage zueinander nicht. Der Müller-Schieber wird neuerdings ohne Öffnungsfedern ausgeführt.



Bild 147


Druckausgleich-Kolbenschieber Bauart Karl Schulz (Nicolai)

1 = fester Teil des Schiebers

3 = Feder

2 = beweglicher Teil des Schiebers

4 = Führungsstift

[Bild 148. Druckausgleich-Kolbenschieber Bauart Müller

1 = fester Teil des Schiebers 2 = beweglicher Teil des Schiebers 3 = Anschlag

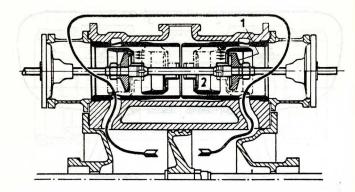


Bild 149. Druckausgleich-Kolbenschieber Bauart Trofinoff

1 Stützplatte 2 Schieberkörper

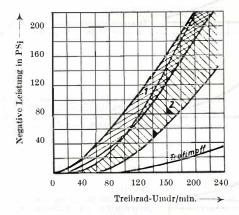
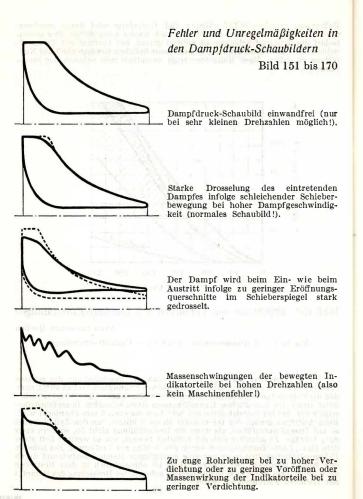
Der Trofimoff-Schieber ermöglicht einen idealen Leerlauf der Lokomotive. Er verringert (wie auf Versuchsfahrten festgestellt wurde) die Leerlaufleistung auf etwa ¼ der Leistung, die bei anderen Leerlaufeinrichtungen erforderlich ist (siehe Bild 150). Er stellt beim Schließen des Reglers (Absperren des Einströmdampfes) selbsttätig eine Verbindung zwischen den Zylinderräumen vor und hinter dem Kolben her. Der Durchgangsquerschnitt dieser Verbindung bleibt während des Leerlaufes in voller Größe bestehen, der Druckausgleich wird also während eines Kolbenspieles nicht verengt oder für gewisse Zeit aufgehoben.

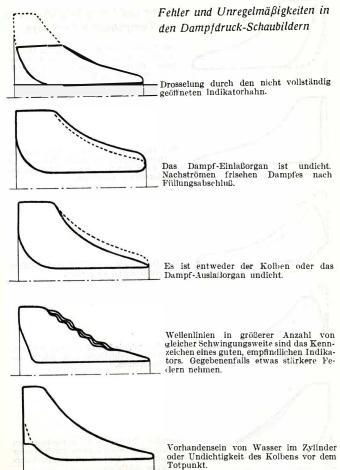
Die Wirkungsweise des Troflmoff-Schiebers ist folgende:

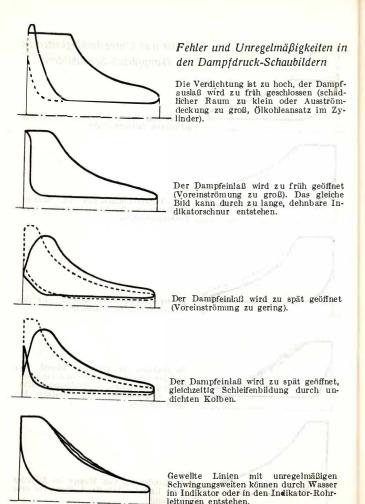
Der Kolbenschieberkörper besteht aus zwei Teilen: einer auf der Schieberstange befestigten Stützplatte 1 und dem eigentlichen, die Dichtungsringe tragenden Schieberkörper 2, der in Richtung der Schieberachse frei beweglich ist.

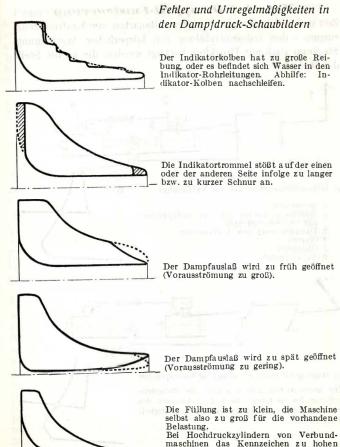
Ist der Regler geöffnet, so drückt der Einströmdampf die losen Kolben-körper gegen die auf der Schieberstange sitzenden Stützplatten. Das Ganze wirkt wie ein üblicher Kolbenschieber. Wird der Regler geschlossen, so fällt der Überdruck zwischen den Schieberkörpern fort. Die losen Schieberkörper bleiben infolge der Spannung der Ringe in der Totlage nahe Zylindermitte stehen. Schieberstange und feste Mittelstücke streifen sich von den losen Körpern ab. Sie bewegen sich entsprechend dem Antrieb durch die äußere Steuerung hin und her, ohne daß die Kanalquerschnitte geschlossen oder auch nur teilweise überdeckt werden. Es ist ein vollkommener Druckausgleich vorhanden. Damit die losen Schieberkörper sich beim Wiedereinströmen des Dampfes ohne Schlag sanft auf die Stützplatten aufsetzen, ist dafür gesorgt, daß sich kurz vor dem Aufschlagen ein Puffer aus Dampf-Luft-Gemisch bildet; der Überdruck im

Pufferraum zwischen Schieberkörper und Stützplatte wird durch zweckentsprechend angeordnete Nuten nach und nach wieder ausgeglichen. Der Raumbedarf des Trofimoff-Schiebers ist äußerst gering. Bei Leerlauf mit Trofimoff-Schiebern ist die Steuerung entgegen der sonst üblichen Gepflogenheit auf Nullfüllung zu stellen. Diese Maßnahme trägt wesentlich zum Schonen der Steuerungsteile bei.


Bild 150. Ergebnisse von Versuchen mit Leerlauf-Einrichtungen


Nach russischen Quellen


Fläche 1 = Luftsaugeventile, Fläche 2 = Umlaufvorrichtungen

Unter limited cut-off versteht man die Beschrünkung des größten Schieberhubes auf einen verhältnismäßig kleinen Füllungsgrad (etwa 50%), ohne daß die Vorteile hoher Füllungen aufgegeben werden müßten. Die Schieberbuchse weist außer den eigentlichen Kanalöffnungen einen schmalen Dampfeinströmschlitz auf, der bei Mittelstellung des Schiebers um etwa 6 mm überdeckt wird. Beim Anfahren genügt der Querschnitt dieses Schlitzes, um den Zylinderraum so mit Dampf aufzufüllen, als wenn die Höchstfüllung nicht 50, sondern etwa 90% betrüge. Je schneller sich der Schieber bewegt, um so weniger Zeit sehn dem Dampf zum Durchströmen durch den Schlitz zur Verfügung. Bei höheren Fahrgeschwindigkeiten kann nur eine geringfügige Menge Zusatzdampf durch den Schlitz gelangen. Der limited cut-off ist offensichtlich in dem Bestreben entstanden, dem Führer die Möglichkeit zu nehmen, bei Drosselung des Dampfes mit höchsten Füllungen zu fahren.

Verbinderdruckes, hervorgerufen durch zu

kleine Füllung im Niederdruckzylinder.

Die **Henschet-Dampf-Öl-Umsteuerung** erspart Zeit und entlastet – gleich anderen Bauarten von Kraftumsteuerungen – den Lokomotivführer von körperlicher Anstrengung. Sie kann auch mit Druckluft betätigt werden, die an die Stelle des Dampfes tritt.

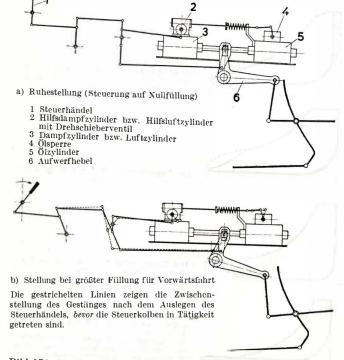


Bild 171. Henschel-Dampf-(bzw. Druckluft-)Öl-Umsteuerung

Die Steuerbewegung erfolgt durch Händel (oder durch Steuerschraube). Das Händel wird auf die gewünschte Füllung eingestellt. Damit ist der Steuervorgang für den Lokomotivführer abgeschlossen. Ein Zurücklegen des Händels in die neutrale Mittelstellung ist nicht mehr erforderlich, der Apparat unterbricht vielmehr den Steuervorgang selbsttätig, sobald der Steuerungsmechanismus die gewünschte Stellung erreicht hat.

Hierin liegt der wesentliche Vorzug der Henschel-Umsteuerung gegenüber anderen Systemen, bei denen durch Unterbrechen des Ölumlaufes und der Dampfzufuhr von Hand die Steuerung in der eingestellten Stellung blockiert wird. Versäumt der Führer aus irgendeinem Grunde den richtigen Augenblick zum Unterbrechen des Steuerungsvorganges, so schlägt die Steuerung — besonders beim Übergang von längeren zu kürzeren Füllungen — erfahrungsgemäß bisweilen bis in die entgegengesetzte Fahrtrichtung zurück. Stöße im Zuge und verschiedentlich auch Zugtrennungen sind die Folge.

Im Gegensatz hierzu arbeitet die Henschel-Umsteuerung vollautomatisch. Ihre wesentlichen Merkmale sind der schwingend aufgehängte Rückführhebel und das Drehschieberventil, das unmittelbar den Dampfzufluß zum Dampfzylinder steuert und mittelbar über einen Dampfkolben das Überström-Ventil

des Ölzylinders öffnet oder schließt.

Die Verriegelung der Steuerung erfolgt durch Öldruck. Ein "Kriechen" der Steuerung nach erfolgter Einstellung kann bei dieser Kraft-Umsteuerung nicht stattfinden, weil — selbst bei Undichtigkeit in der Ölsperre — die selbstämdige Rückführung stets die eingestellte Lage aufrechterhält. Der Dampfzylinder wird mit dem Erreichen der gewünschten Einstellung der Steuerung drucklos, es wird also nur während des eigentlichen Verstellvorganges Dampf verbraucht. Dieser Vorteil der Henschel-Umsteuerung besteht gegenüber allen nur auf dem Prinzip der Gestängerückführung beruhenden Steuerungen, mögen diese nun mit Dampf oder mit Luft betätigt werden.

Der Booster

ist eine sich selbsttätig ein- und ausschaltende Hilfsmaschine für den Antrieb von Lokomotivlauf- oder Tenderachsen. Er ist für das Anfahren von sehweren Lokomotiven mit knapp bemessenen Zylindern (siehe S. 61) eine Notwendigkeit, ermöglicht hohe Anfahrbeschleunigung, Erhöhung der Schlepplast und die Verstärkung älterer Lokomotiven mit zu geringer Zugkraft. Diesen Vorzügen steht der Nachteil unwirtschaftlichen Arbeitens gegenüber. Der Dampfverbrauch schwankt entsprechend einer Geschwindigkeit von $3\div20$ km/h zwischen etwa 24,5 und 14,4 kg je PS $_{\rm c}$ Boosterleistung. Der Booster schaltet sich nach Überschreitung der Reibungsgeschwindigkeit, d. h. je nach Bauart bei etwa $25\div55$ km/h aus und wird erfahrungsgemäß während etwa $^{1}/_{10}$ der Betriebszeit der Hauptmaschinen zur Arbeitsleistung herangezogen.

Der Schmierölverbrauch kann (je nach der Größe der Lokomotive) angenommen werden zu etwa 4÷16 kg auf 1000 km, der Zylinderölverbrauch zu etwa 2÷4 kg auf 1000 km.

Die Gegendruckbremse

wird zur Entlastung der Luftbremse auf langen Gefällstrecken angewendet; ferner hat sie für Lokomotivmeßfahrten zum Erzeugen und Regulieren des "Zugwiderstandes" der Bremslokomotive Eingang gefunden.

Die Steuerung wird gegen die Fahrtrichtung ausgelegt, so daß die Dampfzylinder als Kompressoren wirken.

Die größte Bremswirkung der Gegendruckbremse ist durch die Reibung zwischen Rad und Schiene begrenzt. Vorsichtshalber wird man — um ein Gleiten der Räder (das aber erfahrungsgemäß ohne Zutun des Lokomotivführers schnell wieder verschwindet) auch bei ungünstiger Witterung auszuschließen — mit einer Reibungsziffer von etwa 1/2 rechnen.

Bei normaler (Tal-)Fahrt soll der Schieberkastendruck nicht liber 6 at \ddot{u} ansteigen. Das abzubremsende Zuggewicht ist dementsprechend zu bemessen.

Le Chatelier arbeitet mit Gegendampf, er führt den Zylindern ein Gemisch von Wasser und Luft zu.

Riggenbach saugt Luft durch die Ausströmrohre in die Zylinder und verdichtet sie. Lediglich zum Schmieren benötigt er einen geringen Zusatz von Dampf und heißem Wasser. Die Bremswirkung wird durch ein Ventil vom Führerstand aus geregelt. Der Überschuß an Luft durchströmt einen Schalldämpfer, der vielfach in den Schornsteinmantel verlegt ist. Die Deutsche Bundesbahn verwendet Riggenbach-Bremsen auf Gefällstrecken bis herab zu 100 % Vergl. das Bremsschema auf S. 397.

Über eine "selbstwirkende" Gegendruckbremse siehe Ewald in Glasers Annalen 1950, Seite 197 und 222.

Für kleine Bremskräfte ist die Gegendruckbremse nicht geeignet, da Schieberkastendrücke von weniger als $2\div 3$ atü infolge der Drosselung der verdichteten Luft nicht erzielt werden können.

Elektrische Lokomotiv-Beleuchtung

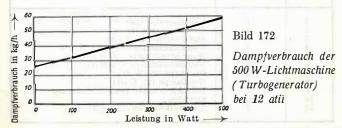
(Einheits-Bauart der Deutschen Bundesbahn)

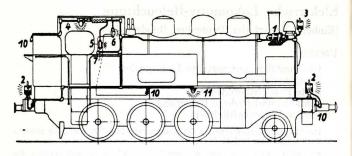
Vorzüge:

Gleichmäßige, gut verteilte Lichtquellen Zuverlässigkeit Stete Betriebsbereitschaft Einfache und saubere Bedienung Größte Wirtschaftlichkeit

Die Streckenlaternen erhalten Glühlampen von 25 \div 100 Watt, die anderen Laternen solche von 10 \div 25 Watt.

Kopflicht-Scheinwerfer erhalten 200-Watt-Glühlampen und erhellen die Strecke bis auf etwa 200 m Entfernung. Sie sind in Deutschland weniger gebräuchlich.


Für größere Lokomotiven benötigt man im allgemeinen:


- 2 vordere Streckenlaternen
- 2 hintere Streckenlaternen 1 oder 2 Signallaternen
- 1 Fiihrerhaus-Deckenlampe
- 1 oder 2 Wasserstandslampen
- 1 Druckmesserlampe (falls der Druckmesser nicht durch den Schlitz der Führerhaus-Deckenlampe beleuchtet wird)
- 1 Ölerlam pe
- 2 bis 4 Triebwerkslampen
- 10 Steckdosen für den Anschluß

1 Handlampe

Die Streckenlaternen sind umsteckbar und derart geschaltet, daß die vorderen Laternen allein oder die hinteren Laternen allein oder die vorderen und hinteren Laternen zusammen brennen können.

Die Lichtmaschinen werden für Spannungen von 25 und 32 Volt ausgeführt.

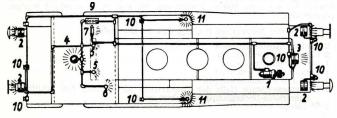
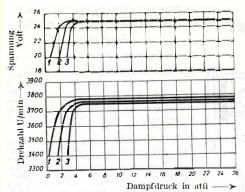



Bild 173. Elektrische Beleuchtungsanlage für eine Tenderlokomotive

Nr.	Stückzahl für eine Tender- lokomotive	Benennung
1 2 3 4 5 6 7 8 9	1 4 1 2 1 1 1 1 10 2	Lichtmaschine (500 Watt, 25 Volt) Streckenlaterne (25 Watt) Signallaterne (25 Watt) Führerhausdeckenlampe (25 Watt) Wasserstandslampe (25 Watt) Druckmesserlampe (25 Watt) Ölerlampe (25 Watt) Handlampe (25 Watt) Lok-Lichtschaltkasten mit Sicherung Steckdosen Triebwerkslampen (25 Watt)

Kurve 1: Leerlauf

2: 50% Last

3: Vollast

Bild 174. Kennlinien der Lichtmaschine

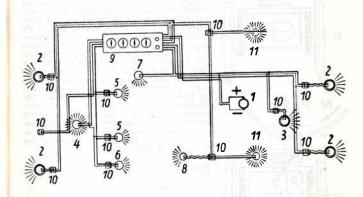
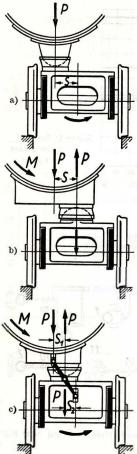



Bild 175. Schaltbeispiel

Bezeichnungen wie auf Seite 232

Plus-Leitung Minus-Leitung

Henschel-Kesselauflagerung und Riickstellvorrichtung für Mallet-Treibgestelle

An Stelle der bei Mallet-Lokomotiven üblichen Abstützung des vorderen Kesselendes auf dem Vorderrahmen mittels ebener Gleitflüchen wurde eine Dreipunkt-Stützung mit allseitig freier Beweglichkeit des Vorderrahmens ausgebildet: Der Kessel stützt sich mit einer mittleren, seitlich verschiebbaren Kugelauflage auf den Rahmen des vorderen Treibgestells.

Kessel und Vorderrahmen haben feste ebene Gleitauflagen, zwischen denen eine Halbkugel samt Kugelpfanne gleitend geführt wird. Halbkugel und Pfanne werden in Abhängigkeit vom Seitenausschlag des Vorderrahmens gegenüber dem vorderen Kessel mittels zweier Hebel zwangläufig so geführt. daß der Stützpunkt immer zwischen den beiden Mittelebenen von Kessel und Vorderrahmen liegt und deren Abstand annähernd halbiert wird ($s_1 = s_2$). Bei gleich großem Gesamtausschlag s von Rahmen- gegen Kesselmitte (wie in den Fällen a u. b) werden die störenden Momente, die sowohl auf Hinterrahmen $(M_1 = P \cdot s_1)$ wie Vorderrahmen $(M_2 = P \cdot s_2)$ wirken, wesentlich verkleinert. Die beiden Übertragungshebel sind in der Mitte auf je einem an der Kugelpfanne angegossenen Zapfen gelagert und greifen mit kugelförmigen bzw. prismatischen Gleitsteinen an Kesselstütze und Rahmenstrebe an. Die Hebelverhältnisse sind entsprechend den verschiedenen Abständen der beiden Hebel von der Schwenkachse des Vordergestells untereinander verschieden und so ausgemittelt, daß sie die Kugelpfanne parallel zur Längsachse des Vordergestells führen.

Bild 176

a) und b)

Übliche Anordnungen: Ungünstiger exzentrischer Angriff der Last P des Kessels bei Bogenfahrt

 c) Neue Anordnung: Günstiger Angriff der Last P bei Bogenfahrt

Sonderbauarten von Dampf-Fahrzeugen Lokomotiven mit Ölfeuerung

Ölfeuerung kommt in Betracht, wenn Petroleumrückstände oder Teeröl preisgünstig zu haben sind. Bei ihr wird im wesentlichen flüssiger Brennstoff, durch Dampf fein zerstäubt, in den heißen Feuerraum geblasen und gelangt dort zur Entzündung.

Die Lokomotive erhält einen Ölbehälter, von dem aus das durch eine Heizschlange vorgewärmte bzw. dünnflüssig gemachte Öl zugeführt wird. Der Zerstäuber sorgt für feinste Verteilung des Brennstoffs. Das Öl wird mittels Dampf in den Feuerraum geblasen.

Der Ölbrenner zerstäubt den Brennstoff und bläst ihn in den Verbrennungsraum ein. Die Verbrennungsluft wird aus dem Feuerkasten ("Asch"-Kasten) angesaugt, bel einigen Brennertypen dem Öl-Dampf-Gemisch bereits an der Brennermündung mittels Luftdüse zugesetzt.

Die Bedienung der Ölfeuerung besteht nur in der Einstellung der Ölförderung, der Dampfzuführung und der Vorwärmung des Öles durch einige Ventile, ist also wesentlich einfacher als die der Kohlenfeuerung, Insbesondere entfällt jede körperliche Arbeit. Die Regelung der Brennleistung kann sich den Erfordernissen der Dampferzeugung fast unbegrenzt anpassen: die Lokomotive läßt sich in dringenden Fällen innerhalb weniger Minuten auf ihre volle Verdampfungsleistung bringen, und man kann unmittelbar nach Erreichung des oberen Brechpunktes elner Steigung durch Verringerung der Ölzufuhr mit sparsamstem Brennstoffverbrauch das anschließende Gefälle befähren.

Die Schamotteauskleidung des Feuerkastens und der unteren Teile der Feuerbüchse schützt die unmittelbar vom Feuerstrahl getroffenen Wandungen und dient ferner dazu, die Zündtemperatur für das Brennöl — welches fein zerstäubt mit dem Dampfstrahl auf die glühende Fläche auftrifft — bei intermittierendem Betrieb aufrecht zu erhalten. Durch entsprechende Regelung der Öl- und Dampfzufuhr wird eine fast rauchfreie Verbrennung erreicht.

Zum Anheizen des kalten Kessels muß in der Brennkammer ein kleines Holzfeuer unterhalten werden, an dem sich der Ölstrahl entzündet, sobald etwa 1-7-1½ atil Kesseldruck erreicht sind. Kann das Öl fein zerstäubt mittels Preßluft oder Fremddampf eingeblasen werden, so ist sofortige Zündung mit Lunte möglich.

An die Gitte des Brennstoffes stellt die Ölfeuerung keine hohen Ansprüche. Stark teerhaltige Brennstoffe machen eine regelmäßige Reinigung der Brennerdüsen erforderlich. Sehr dickflüssige Brennstoffe werden vor dem Zerstäuben durch die auf der Lokomotive eingebaute Ölvorwärmeranlage erwärmt und damit in einen dünnflüssigen Zustand überführt.

Als Ölbrenner kommen in Betracht

insbes. für ungcreinigte Öle und dickflüssige braune Flachbrenner Öle (sogenannte Rückstände)

und Diisenbrenner mit verstellbarer Dampfdüse, insbes, für klare, dünnflüssige Öle. (vorzugsw. in Gestalt des Rundbrenners).

Die Luftzufuhr wird durch Klappen an der Brennkammer geregelt.

Eine gute Mischung des Öldampfes mit der Verbrennungsluft wird durch langen Flammenweg und Umlenken der Flamme erreicht. Es ist daher vorteilhaft, den Brenner an der Rückwand der Brennkammer anzuordnen und zum Schutz der Feuerbuchsrohrwand eine Feuerbrücke vorzusehen. Neuerdings hat sich die Praxis eingebürgert, den Brenner an bzw. unterhalb der Stehkessel-Vorderwand einzubauen. Fcuergewölbe in diesem Fall entbehrlich.

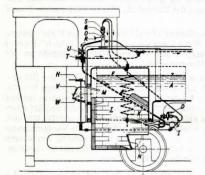
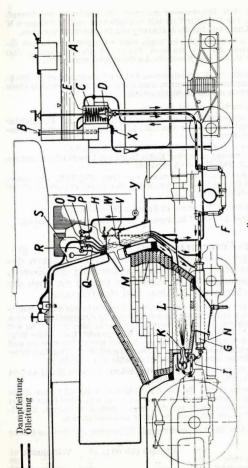


Bild 177

Anordnung der Öl-Feuerung an einer kleinen **Tenderlokomotive**


Bezeichnungen wie unter Bild 178

Anordnung der Öl-Feuerung (siehe nebenstehendes Bild 178)

Am vorderen Ende des Ölbehälters ist ein Siebkorb C angeordnet, in dem das Ölabsperrventil D und eine Heizschlange E untergebracht sind. Das Öl tritt durch das Absperrventil in eine Rohrleitung ein, die über eine Schlauchverbindung F zwischen Lokomotive und Tender zum eigentlichen, unter dem Feuerkasten angeordneten Ölvorwärmer G führt. Von hier gelangt es über einen vom Führerstand durch Feineinstellung H regelbaren Durchgangshahn J zum Brenner K. Dieser besteht aus einem Rotgußgehäuse, das in eine Ölund eine Dampfkammer unterteilt ist. In die Dampfkammer tritt gedrosselter Frischdampf ein, der anschließend durch einen engen Spalt ausströmt und das ausfließende Öl mitreißt und zerstäubt.

Der Feuerkasten L ist mit Schamottesteinen ausgemauert.

Die Luftzufuhr wird vom Führerstand aus durch Klappen N am Feuerkasten geregelt. An der Stehkesselrückwand ist ein Dampfentnahmestutzen O mit den Dampfventllen für die Dampfleitung zu den Ölvorwärmern und zum

Öl-Feuerung

Brenner angeordnet. Ein Druckmesser gestattet die Kontrolle des Dampfdruckes im Brenner. Die Feuertür V ist mit Schaulöchern und Luftklappen W zur Einführung der Lunte und für die Zuführung von Sekundärluft versehen.

Der Tender ist mit einem abnehmbaren oder auch fest eingebauten Ölbehälter A ausgerüstet. An der vorderen Stirnwand des Ölbehälters sitzt der Ölstandsanzeiger B, der eine Kontrolle des Ölvorrates ermöglicht.

Die spezifische Leistung des ölgefeuerten Lokomotivkessels darf in Rücksicht auf die Schonung des Kessels nur in Ausnahmefällen und kurzzeitig einen höheren Wert annehmen als bei Kohlenfeuerung.

Für Dauerbeanspruchung nimmt man an

eine größte verbrannte €lmenge von 100 :- 150 kg je m³ Feuerbüchs-Inhalt und Stunde oder von 2500 :- 3500 kg je m² Gasdurchgangsquerschnitt und Stunde

eine Feuerraumbelastung von ≤ 1.8 Millionen kcal/m³-h (bel Verfeuerung gasreicher Kohle in großen Feuerbüchsen wurden bis zu 2.2 Mill. kcal/m³-h erreicht)

einen Dampfoerbrauch des Brenners von etwa 25:30 % des eingespritzten Ölgewichtes, bei schwacher Belastung 40:50 %. (Nach Meineke-Röhrs 1949, S. 321).

Rauchfreie Verbrennung bel etwa 42 kg/m²-h Heiztlächenbelastung. "Ideelle" Rostfläche R' \sim 0,7 R, wenn R für Steinkohle 7000 kcal/kg.

Ölzusatz-Feuerung verleiht der Lokomotive größere Elastizität gegenüber den wechselnden Anforderungen des Betriebes und ergibt wirtschaftlichere Ausnutzung des Kessels, als bei Kohlenfeuerung möglich. Allerdings vereint sie auch die betrieblichen Nachteile der Kohlen- und der Ölfeuerung.

Die Kohlenfeuerung ist auf die sich weniger häufig ändernde durchschnittlen Lokomotivleistung abgestlimmt, die wechselnden Leistungsspitzen werden von der anpassungsfähigen Ölzusatz-Feuerung bestritten. Eine Steigerung der Höchstleistung ist mit der Ölzusatz-Feuerung nicht bezweckt. Eine solche Möglichkeit darf im Hinblick auf die Schonung des Kessels nur ausnahmsweise und vorübergehend ausgenutzt werden. Ölzusatz-Feuerung erhöht die Durchschnittsleistung von Großlokomotiven gegenüber Steinkohle um 10÷15 %.

Der stündliche Ölverbrauch beträgt bel Großlokomotiven im Mittel 45:-64 Kilogramm je m² kohlenbedeckter Rostfläche.

Bei Ölzusatz-Feuerung wird die für die Kohlenfeuerung wirksame Rostfläche durch die Ausmauerung der Rostfläche um etwa 6 % (Großlokomotive) bis etwa 62 % (80-PS-Baulokomotive) der ursprünglichen verringert. Kesselwirkungsgrad mit 0,7—0,93 höher als bei reiner Kohlenfeuerung.

Henschel hat bisher etwa 500 Lokomotiven mit Ölfeuerung geliefert, und zwar etwa in %:

reine Ölfeuerung		Kleinlok (bis 60		Vollbahnlok 6		
Ölzusatz-Feuerung	42	"	32 7		26 35	

Lokomotiven mit Brennstaubfeuerung

Die Brennstaubfeuerung ermöglicht die wirtschaftliche Verwertung von festen Brennstoffen, die für Rostfeuerung wenig oder nicht geeignet sind.

Meβergebnisse an der Stug-Feuerung mit Braunkohlenstaub Stug = Studiengesellschaft für Kohlenstaubfeuerung auf Lokomotiven

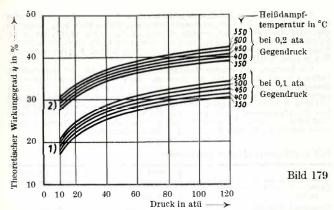
		1		1.000		Zal	hlenta	fel 36
1	Unterer Heizwert des Kohlenstaubes	kcal/kg	5330	5198	5197	5235	5198	5579
2	Rückstand auf dem 4900er Maschensieb	%	23,96	17,60	17.18	19,20	17,60	28,32
3	Stündlich verfeuerte Kohlenstaubmenge	kg/h	642	907	1450	1720	2050	1910
4	Feuerraum- belastung	keal m³h	5,43.105	7,48.105	1,20-106	1,43.106	1,69.106	1,69-10
5	Stündi. verdampfte Wassermenge	kg/h	4090	5480	8640	10500	11920	12030
6	Speisewasser- temperatur	°C	98	94	99	103	96	100
7	Verdampfungsziffer, brutto		6,37	6,04	5.97	6,10	5,82	6,30
8	Auf 1 m ² Heizfläche stündlich erzeugte Dampfmenge	kg/m²h	21,1	28.3	44,5	54,2	61,5	61,9
9	Kesseldruck in atii	kg/cm ²	14,2	14,0	14,1	14,2	14,2	14,2
10	Mittlere Heißdampf- temperatur	°C	337	344	379	377	392	394
11	Mittlere Abgastemp. i. d. Rauchkammer	°C	290	302	337	339	374	376
12	Rauchgas- Analyse CO ₂	%	13,2	13,0	12.9	14,8	13,8	14.4
13	Rauchgas- Analyse O ₂	%	6.0	6,4	6,4	4,4	5,6	5,0
14	Rauchgas- Analyse CO	%	0,0	0,0	0,0	0,1	0,1	0,1
15	Wirkungsgrad des Kessels aus Brennstoffmenge	%	77.2	76,2	76,7	77,2	75,8	76.0

Der Brennstoff wird in staubförmigem Zustand in den Tenderbunker gebracht; von da fließt er den durch eine Dampfturbine angetriebenen Förderschnecken zu. Die Turbine treibt gleichzeitig die Gebläse, welche einen Teil der Verbrennungsluft in die Förderleitungen drücken. Der Brennstaub wird in den Luftstrom eingeführt, das Staub-Luft-Gemisch durch die Gebläse in den Feuerraum eingeblasen. (Vergl. Bild 321, S. 395.)

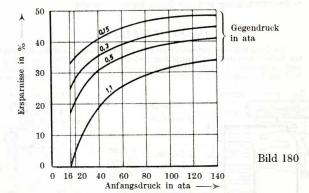
Etwa 60 % der gesamten Verbrennungsluft tritt als "Zweitluft" unmittelbar in den Feuerraum. Ein Stug-Brenner verarbeitet stündlich bis zu 1500 kg Staub.

Heizflächenbelastung bis 80 kg/m² Dampf stündlich. Feuerraumbelastung bis 3 Millionen kcal/m²h.

Dampflokomotiven mit überdurchschnittlichem Wärmegefälle


Das Wärmegefälle der üblichen Lokomotiven ist gegeben durch den Kesselüberdruck von 12÷20 atü, den Gegendruck 1,1 ata und die Überhitzung von 0 bis etwa 450° C.

Eine Erhöhung des Wärmegefälles nach oben — Hochdrucklokomotive — verspricht wärmewirtschaftlichen Gewinn, weil die spezifische Erhöhung des Wärmeaufwandes zur Erzeugung von 1 kg Dampf mit steigendem Druck nennenswert abnimmt.


Bei Erweiterung des Wärmegefälles nach *unten* — Lokomotive mit Unterdruck-Kondensation — wird die der Druckdifferenz entsprechende Dampfwärme ausgenutzt (Vgl. Seite 244 unten und Seite 248 oben).

Die **Hochdrucklokomotive** ist theoretisch um so günstiger, je höher der Anfangsdruck und je höher der Überhitzungsgrad (Seite 241). Der gesamtwirtschaftlich beste Wirkungsgrad liegt nach den bisherigen Erkenntnissen bei etwa $40 \div 60$ atü.

Die übliche Kesselbauart kann bis etwa 25 atü beibehalten werden, wobei allerdings mit erhöhter Anfälligkeit des Kessels zu rechnen ist. Man bezeichnet Lokomotiven mit 20÷25 atü als Mitteldrucklokomotiven. — Ausgesprochene Hochdrucklokomotiven erfordern besondere Kesselsysteme.

Theoretische Kreislauf-Wirkungsgrade unter Berücksichtigung des Druckes und der Überhitzung Nach Dugas in MTZ. Beiheft 1949. S. 10

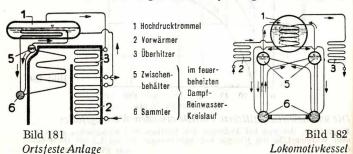
Die wärmewirtschaftlichen Vorteile erhöhten Wärmegefälles

Ersparnisse, die sich bei Änderung des Anfangs- und Enddruckes gegenüber dem Wärmegefälle der jetzigen Lokomotivbauart (16 auf 1,1 at) theoretisch errechnen lassen.

Aus ZVDI 1930, S. 1645

Die Schmidt-Henschel-Hochdrucklokomotive der Deutschen Reichsbahn erzielte etwa 8%, die Löffler-Schwartzkopff-Lokomotive etwa 20% Ersparnis gegenüber der Regelbauart. - Die Mitteldrucklokomotive 44011, Henschel-Fabrik-Nr. 22000, hatte mit 0,7 kg/PSj-h bzw. 0,84 kg/PSe-h den absolut geringsten Kohlenverbrauch einer Kolbendampflokomotive (Verkehrstechn. Woche 1935, S. 316).

Die häufigen und starken Leistungsschwankungen im Lokomotivbetrieb bedingen wegen der Trägheit der Feuerung einen Kessel mit großem Speichervermögen, d. h. großem Wasserinhalt. Schnelldampferzeuger mit geringem Speichervermögen haben sich nicht bewährt, da die Werkstoffe dem häufigen und schroffen Wechsel von Druck und Temperatur nicht gewachsen sind. -Den Hochdruckkesseln (mit Ausnahme des Schmidtschen Zweidruck-Kessels) fehlt der große Vorzug des normalen Lokomotivkessels: ein in sich geschlossenes, gegen äußere Kräfte widerstandsfähiges Gebilde darzustellen.

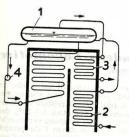

Die wichtigsten Hochdrucksysteme

West plant	Speicherkessel	Schnellverdampfer
Kessel mit natürlichem Wasser- umlauf	Schmidt*)	
Zwangumlaufkessel (mit Umwälzpumpe)	La Mont Löffler*)	Velox
Zwangdurchlaufkessel	and the state of	Benson, Sulzer, Doble

^{*)} Zweidruck-Kessel mit mittelbarer Dampferzeugung

Der SCHMIDT-Kessel

Zweidruck-Kessel mit mittelbarer Dampferzeugung: In einem feuerbestrahlten Rohrsystem wird Naßdampf von 20÷60 kg/cm² über Betriebsdruck erzeugt und als Heizdampf für den Hochdruckkessel 1 verwendet. Der Hochdruckdampf wird im Überhitzer 3 auf die gewünschte Temperatur gebracht. Bei den aus-



geführten Schmidt-Henschel-Hochdruck-Lokomotiven wurde der im Lokomotivlangkessel üblicher Bauart erzeugte Niederdruckdampf von 14 kg/cm² überhitzt. Im mittelbar beheizten Hochdruckkessel wurde Dampf von 60 kg/cm² erzeugt und dem Hochdruckzylinder zur Arbeitsleistung zugeführt. Der Abdampf des Hochdruckzylinders erfuhr durch Zusatz von hochüberhitzten Niederdruckdampf eine Zwischenüberhitzung. Das Dampfgemisch wird in die Niederdruck-

Der Sulzer-Kessel ist ein Einrohr-Dampferzeuger. Einfacher Aufbau, Anfahrzeit nur 15:20 Minuten. Leistung eines Einrohres auf 8:-10 t Dampf je Stunde beschränkt. Für größere Leistungen wird eine entsprechende Zahl gleicher Einrohre parallel geschaltet.

Der Doble-Kessel ist ebenfalls ein Einrohr-Kessel. Er wurde versuchsweise für Lokomotiven, Triebwagen und Kraftwagen verwendet.

Der Benson-Kessel besteht aus beheizten, an Sammelkammern angeschlossenen Rohrschlangen. Er hat von allen Bauarten den kleinsten Wasserinhalt. Grundgedanke: Dampferzeugung im kritischen Zustand, wobei Verdampfungswärme = 0. Da aber der Druck von 224 atu in der Maschine nicht verarbeitet werden kann, wird der erzeugte Dampf auf den Betriebsdruck

Bild 183 Der LA MONT-Kessel

Dampfumwälzverfahren mit unmittelbarer Dampferzeugung.

- 1 Hochdrucktrommel
- 2 Vorwärmer
- 3 Überhitzer
- 4 Umwälzpumpe

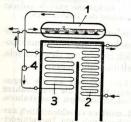
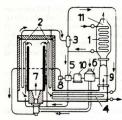


Bild 184


Der LÖFFLER-Kessel

Bezeichnungen wie unter Bild 183.

Dampfumwälzverfahren mit mittelbarer Dampferzeugung.

Der hoch überhitzte Hochdruckdampf strömt zum Teil der Verbrauchsstelle zu, etwa 2/3 der umgewälzten Dampfmenge werden in die Hochdrucktrommel zurückgeführt. Ihre Überhitzungswärme wird dort zur Dampferzeugung ausgenutzt.

Dampfumwälzverfahren nur für Drücke über 80 at wirtschaftlich, da Umpumpleistung bei geringeren Drücken unverhältnismäßig groß.

Bild 185. Der VELOX-Kessel

- Vorwärmer
- Verdampferrohre
- 3 Dampfausscheider
- 4 Überhitzer
- 5 Wasserumlaufpumpe 6 Luftverdichter
- 7 Feuerraum
- 8 Brennstoffpumpe
- 9 Abgasturbine 10 Anfahrmotor
- 11 Rauchgasaustritt
- 11 Rauchgasaustritt

Grundgedanke des Velox-Systems ist der, einen Dampfkessel zu bauen, der leistungsfähiger, einfacher, leichter, kleiner und billiger ist als ein Kessel normaler Bauart. Hohe Heizgasgeschwindigkeit (200-300 m/sec). Überdruck-Feuerung (nur für flüssige und gasförmige Brennstoffe). Gasturbine zum Verlichten der Luft, Hilfsmaschine zum Anlassen. Geringer Raumbedarf, Wirkungsgrad etwa 90%, hohe Betriebsbereitschaft (in 5-6 Minuten auf Vollast).

Kondensations-Lokomotiven

zur Rückgewinnung des Speisewassers.

Die **Henschel-Patent-Kondens-Lokomotive** arbeitet mit *atmosphärischem* Gegendruck.

Der Zylinder-Abdampf entweicht nicht durch den Auspuff ins Freie; er wird vielmehr durch Luftkühlung zu Wasser niedergeschlagen und von neuem zum Speisen des Kessels verwendet (s. Bild 342, S. 405). Beim Kreislauf des Wassers gehen durch unvermeidliche Undichtigkeitsverluste nur etwa 5-:-10% der Wassermenge verloren, die von Auspufflokomotiven gleicher Leistung verbraucht wird. Die Henschel-Kondenslokomotive übertrifft somit in ihrem Fahrtbereich die übliche Auspufflokomotive um ein Vielfaches. Der Leistungsbedarf der Kondensationsanlage wird durch die im Abdampf noch enthaltene Energie gedeckt und ist ohne praktische Rückwirkung auf die Leistung der Lokomotive.

Der Kessel wird mit fast reinem Kondensat gespeist, von geringfügigem Zusatz an Rohwasser abgesehen. Die Kondenslokomotive ist somit der normalen hinsichtlich Schonung des Kessels, Kesselwirkungsgrad und Kesselunterhaltung überlegen.

Henschel-Kondens-Lokomotiven wurden bisher geliefert an die Argentinischen Staatsbahnen, die Sowjetrussischen Staatsbahnen, die Staatsbahnen des Irak, die Deutsche Bundesbahn und die Südafrikanischen Staatsbahnen.

Unterdruck-Kondensation ist für Turbinenlokomotiven verschiedentlich ausgeführt worden. Neuerdings ist man auch bei Turboantrieb zum Dampfniederschlag unter Atmosphärendruck übergegangen, da derwärmewirtschaftliche Gewinn des Unterdruckbetriebes durch Erschwernisse in der Bedienung und der Erhaltung wieder ausgeglichen wurde.

Getriebe-Dampflokomotiven

nennt man solche Lokomotiven, bei denen ein schnellaufender Dampf-"motor" über ein zwischengeschaltetes Übersetzungsgetriebe auf die Treibachsen arbeitet.

Ihr Hauptzweck ist der, der Antriebsmaschine über einen weiteren Fahrtbereich den vorteilhaftesten Betriebszustand (günstigste Füllung, günstigste Drehzahl, folglich geringsten spezifischen Dampfverbrauch) zu ermöglichen, als dies die übliche Kolbendampflokomotive zuläßt.

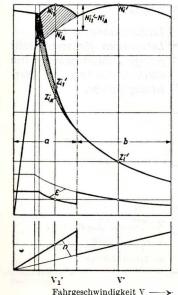


Bild 186. Erhöhung der Leistung und der Zugkraft in niedrigerem Geschwindigkeitsbereich durch Zwischenschalten eines Übersetzungsgetriebes

 $\begin{array}{llll} & F\"{u}r & V_1{'} & erh\"{o}ht & sich & die & indizierte \\ & Leistung & von & N_{i_A} & auf & N_{i_1}{'} & = & N_i{'}. \\ & Leistungsgewinn & somit & (N_{i_1}{'} & - & N_{i_A}), \\ & Zugkraftgewinn & (Z_{i_1}{'} & - & Z_{i_A}). \end{array}$

- a Erster Gang (Antrieb über Getriebe)
- Zweiter Gang (unmittelbarer Antrieb)
- ε Zylinderfüllung
- n Drehzahl des Dampfmotors

Bei unmittelbarem Antrieb (übliche Kolbendampflokomotive!) muß der Kessel für die indizierte Leistung N_i ' ausgelegt werden, wenn bei der Fahrgeschwindigkeit V_1 ' eine indizierte Zugkraft Z_{i_1} ' erzielt werden soll. Bei Anwendung eines Übersetzungsgetriebes genügt eine Höchstleistung $(N_{i_1}'=N_{i_2}')$. Der Kessel kann somit entsprechend dem Leistungsunterschied $(N_i'-N_{i_2}')$ kleiner und leichter ausgeführt werden.

Das gilt beispielsweise für Lokomotiven, die hauptsächlich in niedrigem Geschwindigkeitsbereich verkehren. In solchen Fällen kann mit Hilfe eines festen Vorgeleges die wirksame Leistungerhöht (Bild 186), oder aber bei gleichbleibender Leistung die Kesselgröße verringert werden (Bild 187). — Beispiele: Getriebe-Lokomotiven Sentinel, Kerr-Stuart, Clark, Heisler, Shay u. a., tiblicher Antrieb von Zahnradlokomotiven.

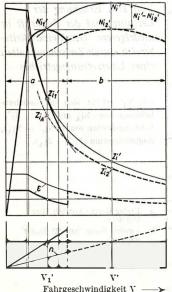


Bild 187

Leistungsersparnis bei Lokomotiven für vorzugsweise geringe Fahrgeschwindigkeiten durch Anwendung eines Übersetzungsgetriebes

a Erster Gang (Antrieb über Getriebe)b Zweiter Gang

(unmittelbarer Antrieb)

ε Zylinderfüllung

n Drehzahl des Dampfmotors

Bei stetig veränderlicher Übersetzung liegt stets die "günstigste" Geschwindigkeit vor, sofern die Lokomotive ausgelastet ist.

Als Dampfmotor kommen der schnellaufende Dampfmotor (bis etwa 1200 U/min) und die Dampfturbine in Betracht, als Übersetzung die mechanische, die hydraulische oder die elektrische Kraftübertragung, wie sie in entsprechender Weise bei Verbrennungsmotor-Fahrzeugen iiblich sind (siehe S. 275.)

Antrieb mittels Treib- und Kuppelstangen über eine Blindwelle, Gruppenantrieb oder Einzelachsantrieb.

Vorteile der Getriebe-Dampflokomotive

Der Dampfmotor arbeitet vorzugswelse unter ginstigsten Voraussetzungen.

Die Lokomotive läuft schneller an (höhere Anfahrbeschleunigung) als die Lokomotive der Regelbauart.

Die störenden Bewegungen treten kaum in Erscheinung, bei Turbo-Antrieb entfallen sie.

Lokomotiven mit niedrigem Geschwindigkeitsbereich kommen mit kleinerem Kessel aus und erfordern geringeres Baugewicht als Lokomotiven der Regelbauart.

Die Belange des Fahrzeug- und Bogenlaufes können bei Gruppen- oder Einzelantrieb in vollkommenerem Maße berücksichtigt werden als bei Lokomotiven der Regelbauart. (Brückenfahrzeug an Stelle des Einrahmen-Fahrzeuges, vgl. S, 72.)

An Stelle der Füllungsregelung kann vorzugsweise die Regelung durch das Getriebe (Änderung der Übersetzung) treten. Das ist eine Vorstufe zur erstrebten halbautomatischen oder vollautomatischen Bedienung der Lokomotive.

Nachteile der Getriebelokomotive

Der Wirkungsgrad wird durch das Getriebe relativ gedrückt. (Dennoch kann u. U. durch geeignete Maßnahmen der Gesamtwirkungsgrad der Regelbauart erhalten bzw. übertroffen werden.

Die Bauart ist verwickelter als die der Regellokomotive.

Die Beschaffungskosten sind zumindest solange höher als die der Regellokomotive, als die Getriebelokomotive eine "Sonderbauart" darstellt.

Die Dampfturbinenlokomotive

ist ein Sonderfall der Getriebelokomotive. Sie kennt keine störenden Bewegungen und läßt im günstigen Drehzahlbereich der Turbine geringeren Dampfund Brennstoffverbrauch erwarten als die Kolbendampflokomotive.

Die Turbine ist empfindlich gegen größere Drehzahlschwankungen, da sich die Schaufeln nur für eine bestimmte Drehzahl günstig auslegen lassen. Bei abweichenden Drehzahlen treten Spaltverluste auf, die den Wirkungsgrad beeinträchtigen. Die mechanische Kraftübertragung mit festem Vorgelege über Blindwelle sowie Treib- und Kuppelstangen ergibt besten Übertragungs-Wirkungsgrad, aber ungünstige Verbrauchswerte bei Abweichungen von der günstigsten Geschwindigkeit, insbesondere beim Anfahren, und erfordert eine besondere Rückwärtsturbine.

Die elektrische Krafteibertragung wird trotz ihres hohen Baugewichtes wegen ihrer guten Regelbarkeit und ihrer Betriebssicherheit geschätzt.

Die Dampfturbine arbeitet besonders gut mit Unterdruck im Kondensator, doch wird neuerdings die Auspuf-Turbinenlokomotive bzw. die Lokomotive mit Luftkihlung unter Atmosphärendruck bevorzugt, die im Aufbau einfacher ist und sich billiger unterhalten läßt.

Die turbomechanische Krupp-Zoelly-Lokomotive der Deutschen Reichsbahn lag im praktischen Dienstplan etwa 10÷12 % günstiger als eine entsprechende Kolbendampflokomotive. Versuchsfahrten ergaben die niedrigsten absoluten Verbrauchswerte, die je mit einer Dampflokomotive erzielt wurden (siehe Nordmann in ZVDI 1930, S. 173). Dieses günstige Ergebnis ist wesentlich von der Unterdruck-Kondensations-Anlage beeinflußt gewesen.

Dampflokomotiven mit Einzelachsantrieb

arbeiten vorzugsweise mit schnellaufenden Dampfmotoren (Kolbendampfmaschinen oder Dampfturbinen) und Übersetzungsgetriebe (Drehmomentenwandler). Bei der von Henschel entwickelten Einzelachsantriebs-Lokomotive (siehe S. 249) stimmen die Drehzahlen von Dampfmotor und Treibachse überein.

Der Einzelachsantrieb erfordert besondere Maßnahmen gegen die Gefahr des Schleuderns der Räder.

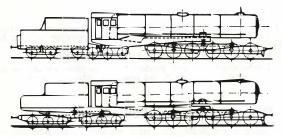


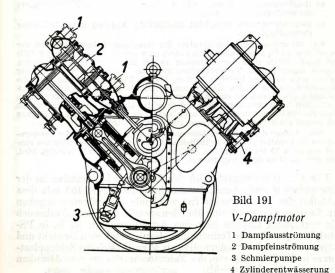
Bild 188 und 189

Schematische Darstellung von Dampflokomotiven Bauart Henschel mit Einzelachsantrieb und optimalen Laufeigenschaften

Ausschließliche Verwendung von Drehgestellen (vergl. S. 75).

Die Henschel-Einzelachsantriebs-Lokomotive

Bild 190 Gelenk-Kupplung


- 1 Treibzapfen
- 2 Gelenkbolzen

Fabrik-Nr. 25000, Betriebs-Nr. 191001, der Deutschen Reichsbahn, weist vier Treibachsen auf. Jede Treibachse wird durch einen außenliegenden V-förmigen Zweizylinder-Dampfmotor angetrieben, dessen Massenkräfte in sich ausgeglichen sind.

Die V-Dampfmotoren gehören zum abgefederten Teil der Lokomotive, ihre Drehzahl ist gleich derjenigen der Treibachsen. Jede der vier Treibachsen wird einseitig über eine Gelenkkupplung von einer außerhalb der Radebene angeordneten V-Maschine angetrieben. Typenskizze der Lokomotive auf Seite 391.

> Treibraddurchmesser 1250 mm Achsdruck 18,5 t

Planmäßige Höchstgeschwindigkeit 175 km/h

Die feuerlose Lokomotive

nutzt die Fähigkeit des Wassers aus, unter hohem Druck große Energiemengen zu speichern. Die Energie wird in Form hochgespannten Dampfes von einer ortsfesten Kesselanlage übernommen und nach und nach unter Senkung des Kesseldruckes in den Dampfzylindern verarbeitet.

Die feuerlose Lokomotive besitzt verhältnismäßig kleinen Fahrbereich, zeichnet sich aber durch hohe Wirtschaftlichkeit, geringe Unterhaltungskosten und Sicherheit gegen Feuersgefahr aus. Sie verbraucht je nach Zylinderfüllung und Fahrweise etwa 18.–27 kg Dampf je PS_ih. Wieviel Dampf durch Senken des Kesseldruckes erzeugt werden kann, zeigt Bild 193, Seite 252.

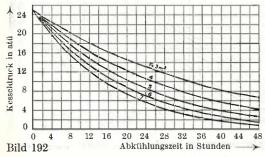
Damit die zweckmäßige Größe einer feuerlosen Lokomotive einwandfrel ermittelt werden kann, empflehlt es sich, zusätzlich zu den nach S. 24/25 erforderlichen Angaben noch Aufschluß zu geben über

- a) Heizflächengröße, Dampfdruck und Dampftemperatur (Überhitzung?) der ortsfesten Kesselanlage,
- b) Betriebsprogramm (möglichst ausführliche Angaben unter Beifügung eines Gleisplanes).

Für die erstmalige Inbetriebnahme der feuerlosen Lokomotive wird der Kessel zu etwa 2 /3 seines Inhalts mit kaltem oder vorgewärmtem Wasser gefült und dann mittels einer Verschraubung an die Dampfleitung des ortsfesten Kessels angeschlossen. Die Verbindung zwischen Lokomotive und ortsfester Anlage muß so lange bestehen bleiben, bis die Flüssigkeitswürme bzw. die Dampfspannung in beiden Kesseln annähernd die gleiche ist. Bei weiteren Füllungen des Kessels ist eine Erneuerung des Wassers nicht erforderlich, es muß lediglich der etwa durch Dampfniederschlag hinzugekommene zusätzliche Wasservorrat bis zum unteren Prüfhahn abgelassen werden, worauf die Füllung mit Dampf aus dem ortsfesten Kessel von neuem erfolgen kann.

Das "Laden" der feuerlosen Lokomotive beansprucht je nach der Temperatur des im Behälter (Kessel) befindlichen Wassers und des Kesseldruckes eine Zeit von etwa 15 bis 30 Minuten. Welche Dampfmenge hierfür benötigt wird, läßt sich mit Hilfe des Schaubildes auf Seite 252 ermitteln.

Für den Anwendungsbereich der feuerlosen Lokomotive ist der Energievorrat maßgebend, der durch die nach Bild 193 mit dem Abfallen des Kesseldruckes frei werdende Dampfmenge gegeben ist. Aus dieser ermittelt sich über den spezifischen Dampfverbrauch die verfügbare Energie bzw. das Arbeitsvermögen (z. B. in PS-Stunden oder Brutto-Tonnenkilometern). Setzt man Gewicht und Eigenwiderstand der Lokomotive ab, so ergibt sich die Schlepplastkurve in Abhängigkeit von der Fahrstrecke, die bis zum Absinken auf einen "Mindestkesseldruck" zurückgelegt werden kann.


Der Mindestkesseldruck bestimmt die jeweils mögliche Schlepplast. Umgekehrt setzt eine bestimmte Schlepplast einen Mindestkesseldruck voraus. Niedrigere Kesseldrücke können mangels der erforderlichen Zylinderzugkraft für diese Schlepplast nicht ausgenutzt werden. Für den Leerlauf der Lokomotive kann man bis auf etwa 1,5 atü heruntergehen.

Die größtmögliche Schlepplast ist durch die Reibungsgrenze bedingt. Der zugehörige Kesseldruck ist der höchste, der unmittelbar ausgenutzt werden kann. Bei höheren Drücken muß mit gedrosseltem Dampf gefahren werden (nach Bild 194 beispielsweise ist der Kesseldruck auf etwa 12 atü zu drosseln).

Da der ausnutzbare Druckunterschied je nach der Größe der Schlepplast verschieden ist, kann mit einer bestimmten Schlepplast stets nur ein Bruchteil des Speichervermögens der feuerlosen Lokomotive ausgenutzt werden.

Der Begriff der Leistung ist bei der feuerlosen Lokomotive ohne praktische Bedeutung, da er — im Gegensatz zur gefeuerten Lokomotive — keinen konstanten Wert besitzt. Theoretisch ermöglicht die aufgespeicherte Energie jede beliebige Leistung. Im praktischen Betrieb bestimmt sich die Leistung nach den iblichen Schlepplasten und entsprechenden Fahrgeschwindigkeiten. Da den konstanten Kennwert der feuerlosen Lokomotive das Arbeitsvermögen darstellt, ist die Leistung von der Zeitdauer abhängig, während welcher sie in Anspruch genommen wird. Ein Maßstab für die betriebliche Verwendung der Lokomotive ist demnach das Produkt Leistung × Zeitdauer, nicht die Leistung allein.

Ein Beispiel für das Arbeitsvermögen und die Leistung bringt S. 253.

Druckverlust von jeuerlosen Lokomotiven durch Abkühlung im Freien

F = Abkühlungsoberfläche des Kessels je 1000 kg Wasserinhalt Voraussetzung: Mittlere Temperatur der Außenluft = 15° C Wärmedurchgangszahl K = 2,5 Kcal/m²-h°C

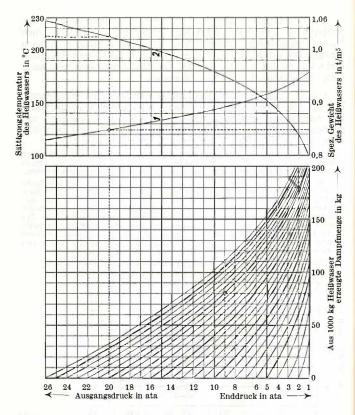


Bild 193. Dampferzeugung der feuerlosen Lokomotive (Energievorrat)

Kurve 1 = Spez. Gewicht des Heißwassers " 2 = Sättigungstemperatur des Heißwassers

Beispiel: Wenn der Kesseldruck von 20 auf 9 ata sinkt, werden auf 1000 kg Heißwasser 80 kg Dampf frel. Heißwasser von 20 ata hat eine Sättligungstemperatur von 211°C und ein spez. Gewicht von 0,848 t/m³.

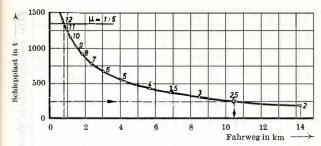


Bild 194. Arbeitsdiagramm

Das Schaubild gibt den maximalen Fahrweg an, der auf waagerechter, gerader Strecke mit einer bestimmten Schlepplast zurückgelegt werden kann, sofern die Fahrt mit einem Ausgangsdruck von 20 atü begonnen wird. Die Zahlen über der Schlepplastenlinie nennen die Spannung in atü, auf welche der Kesseldruck bei der jeweiligen Arbeit absinkt.

Beispiel: 250 t Schlepplast können über eine Strecke von etwa 10,5 km befördert werden. Kesselüberdruck am Ende dieser Fahrt noch etwa 2,5 atti. Das Diagramm gibt unmittelbaren Aufschluß nur über Fahrten, die bei 20 atti Kesseldruck begonnen und ohne Zwischenhalt durchgeführt werden.

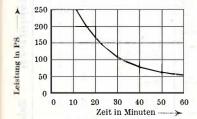


Bild 195. Leistungslinie

Beispiel: Die Lokomotive kann eine Leistung von 200 PS etwa 16 Minuten lang, eine solche von 100 PS etwa 32 Minuten lang abgeben.

Kennlinien einer feuerlosen Lokomotive mit 8 m³ Wasserinhalt bei einem Ausgangsdruck von 20 atii und einem Enddruck von 2 atii

Voraussetzungen: 20 atü. 1—4: W_L 5—15: W_L II II 8 kg/t, WW

Lfd. Nr. 90705 400 Lokomotiven 1435 mm und 4 4 3 5 5 5 600 4444 900 Spur Größe 00000 CCB В Achsanordnung 630 540 630 630 400 480 540 540 420 600 280 Zylinder-Ø Trieb- und Laufwerk 5000 400 300 mm 450 450 Hub 1000 1000 mm 800 950 950 $\frac{850}{900}$ 650 Treibrad-Ø 3000 3000 3000 3400 3900 1800 2300 2500 2500 2500 $\frac{1600}{2500}$ 1200 Gesamt-Achsstand 120 8,63 25 $\frac{12}{16}$ Wasser-11,5 2,5 inhalt Dampf-3,5 0300000 22221 3,5 0,7 0170 raum Kesseldruck 36,0 39,9 43,8 47,7 55,8 17,4 23,0 27,2 30,8 34,4 63,8 17,2 33,0 36,6 8,6 Dienstgewicht 9000 9975 10950 11925 13950 15950 4300 8250 9150 Größte Zug-4350 5750 6800 7700 8600 2150 kg kraft bei u=1:4 bis 1640 915 1015 1120 1225 1435 etwa 580 700 780 875 405 775 860 200 0/00 (aus der Reibung) auf ge Strecke bei einer Steigung Größtmögliche 1035 575 635 705 770 905 $\frac{280}{365}$ $\frac{435}{490}$ 40 atü 505 130 320 355 395 430 575 155 205 240 275 305 $\frac{150}{290}$ und 75 ng) auf gerader jede 105 135 160 185 205 $\frac{105}{200}$ 50 andere 285 160 175 195 215 250105 120 135 155 75 145 170 35 VOD 1) 220 ausführbare 80 90 105 120 60 115 125 95055 50 30 Fahrweg 26,4 27,8 28,9 29,5 15,8 22,6 23,0 26,0 27,6 17 22 24 17,0 für 0 0/00 b. max. 070 Schlepplast Kleinster Spur 100 30 Krümmungshalbmesser

Die Henschel-Gilli

Die

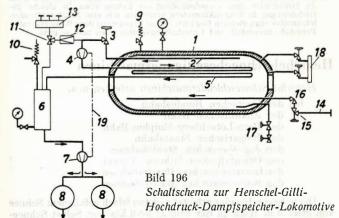
gängigsten

feuerlosen

Henschel-

Lokomotiven

Zahlentafel


37

Hochdruck-Dampfspeicher-Lokomotive

arbeitet mit Ausgangsdrücken von etwa 40 ÷ 140 atü. Der hochgespannte Dampf wird einem ortsfesten Dampferzeuger entnommen, er kann aber auch auf einfache Weise mit Hilfe von überhitztem Niederdruckdampf erzeugt werden.

Der dem Speicher der Lokomotive entnommene Hochdruckdampf wird auf eine gleichbleibende Gebrauchsspannung von 10-14 atü gebracht. Anschließend wird der Dampf auf seinem Weg zu den Zylindern durch ein im Dampfspeicher liegendes Rohrsystem geleitet und erfährt damit eine kräftige Überhitzung.

Die Bedienung der Lokomotive unterscheidet sich nicht wesentlich von derjenigen einer üblichen feuerlosen Lokomotive.

- Speicher
- Dampfentnahmerohr 3 Hauptabsperrventil
- 4 Hochdruckregler mit Drosselventil
- 5 Überhitzer
- 6 Ausgleichbehälter 7 Niederdruckregler
- 8 Zylinder
- 10 Niederdruck-Sicherheitsventil

- 11 Selbsttätiges Überströmventil
- 12 Druckminderventil
- 13 Dampfentnahmestutzen für Luft-
- pumpe, Turbo usw.
- 15 Ladeventil
- 16 Rückschlagventil
- 17 Wasserablaßventile 18 Wasserstandsanzeiger
- Hochdruck-Sicherheitsventil 19 Mechanische Kupplung zwischen
 - Hoch- und Niederdruckregler

Die Vorzüge der Henschel-Gilli-Lokomotive sind:

Hohe Energiespeicherung (Kapazität) und entsprechend großer Fahrbereich (Aktionsradius), bedingt durch den hohen Spannungsunterschied zwischen Ausgangsdruck und Gebrauchsspannung. Bei rd. 100 atü etwa die doppelte Kapazität gegenüber einer üblichen feuerlosen Lokomotive gleichen Gewichtes. Etwa dreifacher Fahrtbereich, da geringer spezifischer Dampfverbrauch.

Keine Änderung der Zugkraftverhältnisse während der Betriebsdauer, da Gebrauchsspannung (Arbeitsdruck) von etwa 10÷14 atü gleichbleibend. wie es den gefeuerten Lokomotiven eigentümlich ist. Die Lokomotive wird somit wie eine gefeuerte Dampflokomotive eingesetzt und gefahren.

Hohe Energieausnutzung, da Überhitzung des Dampfes und infolgedessen geringer spezifischer Dampfverbrauch und konstanter hoher Eintrittsdruck im Zylinder.

Als grober Anhalt möge gelten: Bei einem Ausgangsdruck von 100 atii kann die Lokomotive ohne Zwischenladung des Kessels etwa die gleiche Betriebsleistung in Tonnenkilometern verrichten wie eine Naßdampftenderlokomotive etwa gleichen Gewichts bis zur Erneuerung ihres Wasservorrates. Personal-, Brennstoff- und Unterhaltungskosten etwa halb so groß.

Henschel-Schneebeseitigungsmaschinen

Henschel-Schneeschleudermaschinen arbeiten u. a.

bei der Deutschen Bundesbahn

der Anatolischen Bahn

der Bern-Lötschberg-Simplon-Bahn

der Bulgarischen Staatsbahn

den Jugoslawischen Staatsbahnen

den Orientalischen Bahnen (Türkei)

den Österreichischen Bundesbahnen

den Schweizerischen Bundesbahnen

Die Schneeschleuder arbeitet sich bei frisch gefallenem Schnee von etwa 3 m Höhe in der Stunde 5∴6 km vor. Selbst Schneewände von 5 m Höhe wurden durchstoβen. Bei 3 m Schneehöhe beträgt die Wurfweite ~ 20 m. Drehzahl der Schleuder ~ 150/min.

Das Schleuderrad wird von einer liegenden oder stehenden Dampfmaschine angetrieben. Drehzahl der Dampfmaschine $500 \div 550$ U/min. Den Dampf liefert ein Lokomotiv-Naßdampfkessel üblicher Bauart. Vorderer Pufferträger abnehmbar, nur für Transportzwecke erforderlich.

Über Schneeräumer und Schneepflüge siehe Seite 372. Henschel-Klima-Spurrinnenräumer dienen zur Tiefräumung bis 90 mm unter SO (Schaffung von Schneelbe auch als Schneepflug. Der Spurrinnenräumerkann an jede Lokomotivegleicher Spurweite angesetzt werden.

Der elektrische Zugbetrieb

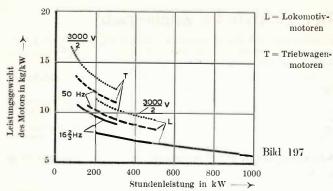
zeichnet sich aus durch größte Leistungsfähigkeit, hohe Überlastbarkeit, ständige Einsatzbereitschaft, beste Energieausnutzung und einfache Fahrzeugunterhaltung.

Nachteilig sind die Abhängigkeit von der Stromzuführung und die hohen Anlagekosten.

Die Wirtschaftlichkeit elektrischer Fernbahnen kann als gegeben angesehen werden, wenn an Strom jährlich mindestens 200000 kWh/km verbraucht werden. Das entspricht etwa 200000 t/Tag im Flachland oder 10000 t/Tag im Gebirge. Unter besonderen Bedingungen (wie reichliche Wasserkraft bei Mangel an Kohle) können bereits etwa 50000 kWh/km im Jahr genügen.

Stromsystem und Stromabnehmer-Spannung

1. Gleichstrom


3000	Volt	Belgien, Brasilien (Paul Nordafrika, Nordame Spanien, Südafrika		١,
1500	Volt	Brasilien (Oeste de Mi England, Frankreich, Indonesien, Japan, No Spanien, Südafrika, T	Holland, cuseeland, I	Indien. Portugal.
1500	Volt	Moskau, Sydney		
1200	Volt	S-Bahn Hamburg)	
	Volt	S-Bahn Berlin		
800	Volt	Hamburger Hochbahn	mit 3.	Stadtschnell-
800	Volt	Argentinien	Schiene	und
	Volt	Berliner Hochbahn	- Cincino	Vorortbahnen
	Volt	London, Tokio.	J	
		Western Australia	´)	
bis etwa 1350	Volt	Straßenbahnähnliche [1]	perlandbahi	nen i. Deutschland
bis etwa 1200	Volt	Deutschland: Industrie		
$220 \div 750$		Grubenbahnen	crgouu	(rug, oursettr, ,,
500÷600		Straßenbahnen und Ob	usse	

2. Einphasen-Wechselstrom

20 000	Volt	50	Hz	Ström aus der Landesversorgung: Deutschland (Ver- suchsbetrieb Höllentalbahn), Frankreich (Neubau)
15 000	Valt	50	Hz	Strom aus der Landesversorgung: Ungarn
19000	V UIL,	00	112	
15000	Volt.	162/3	Hz	Deutschland (Fernbahnen, Vorortbahnen in
		, 0		Siid- und Mitteldeutschland) Norwegen,
				Österreich, Schweden, Schweiz
11000	Volt,	25	Hz	USA
6000	Volt.	25	Hz.	Hamburger Vorortbahnen

3. Drelphasen-Wechselstrom (Drehstrom)

10 000 Volt, 45 Hz 3600 Volt, 16²/₃ Hz I talien (wird bei Neubauten nicht weiter angewendet)

Leistungsgewicht des Fahrmotors in kg je kW Stundenleistung Nach Kother in "Elektr. Bahnen" 1941, Ergänzungsheft S. 100).

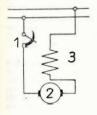
Die Vor- und Nachteile der einzelnen Stromsysteme sind in hohem Maße bedingt durch die Eigenarten der verwendeten

Triebmotoren (Fahrmotoren).

1. Als Glelchstronunotor verwendet man den 4 poligen Reihenschlußmotor nach Bild 198 (evtl. mit Wendepolen), der eine für den Bahnbetrieb günstige Drehzahl-Kennlinie aufweist. Bei diesem Motor darf man wegen Überschlagsgefahr mit höchstens etwa 1500 Volt Klemmenspannung rechnen. Aus dem gleichen Grunde pflegt man 3000 Volt als höchste Fahrdrahtspannung zu verwenden, wobei beispielsweise je zwei Motoren fest in Reihe geschaltet sind. Diese verhältnismäßig geringe Spannung bedingt größere Verluste in der Energiezuführung und erfordert kürzere Abstände der Unterwerke voneinander (rd. 20 km bel 3000 V).

Stufenregelung durch Änderung der Motorspannung mittels Reihen-Parallelschaltung, weitere Regelung durch Feldschwächung.

Der Motor entwiekelt großes Anfahrmoment und ist hoch überlastbar (vgl. Bild 203). Die Höchstleistung liegt im Gebiet mittlerer Fahrgeschwindigkeiten Die Leistung fällt in höherem Geschwindigkeitsbereieh stark ab, bei neuzeitlichen kompensierten Motoren mit Feldschwächung bis herunter auf 50 % (neuerdings auch 25 %) bleibt sie von etwa halber bis voller Fahrgeschwindigkeit konstant. Das Anfahren erfolgt über Vorschaltwiderstände sowie durch Umgruppieren der Fahrmotoren. (Schaltschema auf Seite 262).


Das Leistungsgewicht des Motors steigt mit der Motorspannung. Es beträgt etwa $7 \stackrel{.}{\leftarrow} 9$ kg je kW Nennleistung für gewöhnliche, bis herab zu $3.5 \stackrel{.}{\leftarrow} 4$ kg/kW für kompensierte Motoren.

Bei elektrischem Bremsen arbeitet der Fahrmotor als Generator (Stromeruger) entweder auf den Widerstand — Widerstandsbremse — oder im Netz zurück — Nutzbremse. Viele Gleichstrom-Fernbahnen verwenden die elektrische Nutzbremse auf längeren Gefällen betriebsmäßig bis zur vollen Lokomotivleistung, bei der Hamburger S-Bahn dient sie als Haltebremse. Bei Triebwagen auch Magnetschienenbremsen.

Gleichstromfahrzeuge eignen sich vorzugsweise für Straßenbahnen, Stadt- und Schnellbahnen, bei denen hohe Anjahrbeschleunigung ausschlaggebend ist und hohe Geschwindiskeiten nur kurzeitig verlanut werden.

Der Strom für Gleichstrombahnen wird aus den Drehstrom-Landesnetzen über Gleichrichterwerke bezogen, nur selten noch über Umformer.

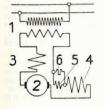

Die Vorliebe für den baulich einfachen Gleichstrommotor hat in USA zu *Umformerlokomotiven ge*führt, die mit Einphasen-Wechselstrom gespelst, aber mit Gleichstrom betrieben werden.

Bild 198. Fahrmotor für Gleichstrom

(Beispiel eines Reihenschlußmotors als Hauptschlußmotor ohne Feldschwächung)

1 = Anlasser; 2 = Anker; 3 = Feldwicklung.

Bild 199. Fahrmotor für Wechselstrom

(Beispiel eines Reihenschluß-Kommutator-Motors für Einphasen-Wechselstrom)

1 = Transformator 4 = Kompensationswicklung

2 = Anker 5 = Wendepolwicklung

3 = Feldwicklung 6 = Parallelwiderstand

2. Einphasen-Wechselstrom mit niedriger Frequenz (16³/₃ Hz bis etwa 25 Hz) ermöglicht beliebige Änderung der Spannung mittels einfacher ruhender Umspanner in Kraftwerken, Unterwerken und auf Fahrzeugen. Daher hohe Fahrdrahtspannungen, niedrige Ströme, wirtschaftliche Übertragung großer Leistungen auf weite Entfernungen, Unterwerksabstände bis etwa 70 km.

Als Fahrmotor wird der Reihenschlußmotor verwendet, der im Aufbau dem kompensierten Gleichstrommotor ähnelt, aber lannelliertes Ständereisen augiewist. Schaltung: Wendewicklung mit parallelgeschaltetem, "Wendewiderstand" (Bild 199). Spannungsregelung mittels Stufentransformator, daher ist die Fahrgeschwindigkeit feinstullg beliebig regelbar. Durch fortlaufende Feldschwächung wird die Drehzahl bei gleichbleibender Leistung erhöht.

Der 16²/₁ Hz-Motor entwickelt nahezu konstante Zugkraft bis zur Höchstgeschwindigkeit, gibt aber hohe Leistungsspitze für Motoren, Transformator und Steuerung. Beim Anfahren ist er wegen Bürstenfeuer empfindlicher als der Gleichstrommotor. Er wird daher mit Niederfrequenz und mäßiger Motorspannung (etwa 500 V) betrieben.

Der 16²/₃ Hz-Wechselstrommotor ist somit dem Gleichstrommotor bei hüheren Geschwindigkeiten überlegen, doch verfügt er über kleinere Anfahrleistung als dieser (Bild 203/4). Er eignet sich daher vorzugsweise für Fernbahnen, bei denen es mehr auf längeres Fahren mit hoher Geschwindigkeit als auf hohe Anfahrbeschleunigung ankommt.

Das Leistungsgewicht ist bei neueren hochausgenutzten Motoren bis auf etwa 5 kg/kW herabgegangen.

Die elektrische Bremse arbeitet in der Regel auf Bremswiderstand. Sie hat sich nur für Teilleistung eingeführt (Abbremsen des Lokomotivgewichts zum Schonen der Bremsklötze). Nutzbremse möglich, verschiedentlich für Teilleistung ausgeführt, doch ist Stromrückgabe wirtschaftlich ohne Belang.

Der 16% Hz-Strom wird zumeist in bahneigenen Kraftwerken unmittelbar ceugt, teilweise auch durch Umwandlung aus dem 50 Hz-Drehstrom-Landesnetz über Maschinen-Umformer oder auch Quecksilberdampf-Umrehmen.

3. Der Bahnbetrieb mit Einphasen-Wechselstrom von "hoher" Frequenz (56 Hz) ist uoch in der Entwicklung begriffen. Sein Vorteil liegt in der unmittelbaren Verwendung des in den Landesnetzen verfügbaren Drehstromes über einfache Einphasen-Umspannwerke. Die ortsfesten Anlagen fallen daher wesentlich einfacher und billiger aus als bei Verwendung von 16% Hz-Strom, allerdings muß die durch den Bahnbetrieb bedingte ungleichmäßige Belastung des Drehstromnetzes der Landesversorgung in Kauf genommen werden.

Die Fahrzeugtransformatoren bauen sich zwar leichter, die Schaltgeräte und die Fahrmotoren aber schwerer als bei $16^{2}/_{2}$ Hz. Der Motor kann bei gleichen äußeren Abmessungen nur etwa 80% der $16^{2}/_{3}$ Hz-Leistung entwickeln, daher Leistungsgewicht etwa 6.5~kg/kW. (Unter sonst gleichen Verhältnissen nur $^{1}/_{3}$ der Klemmenspannung zulässig, also dreifacher Strom und großer Kommutator mit vielen Bürsten und hohen Verhusten erforderlich.) Regelung und tharakteristik wie beim $16^{2}/_{5}$ Hz-Motor.

Diese Nachteile können durch Unformerlokomotiven vermieden werden. Der dem Fahrdraht entnommene 50 Hz-Einphasenstrom wird auf dem Fahrzeug mittels (umlaufender) Umformer oder (ruhender) Quecksilberdampf-Gleichrichter in Gleichstrom umgewandelt. Gleichstrom-Fahrmotoren-Umformer geben guten Leistungsfaktor und ermöglichen einfachste Regelung wie auch Nutzbremsung, bedingen aber Mehrgewieht.

Beim System Kando (Ungarn) wird auf dem Fahrzeug in 50 Hz-Mehrphasenstrom umgeformt. Asynchronmotoren mit nur 3 bis 4 Geschwindigkeitsstufen, Flüssigkeitsanlasser.

Beim System Krupp wird ein Einphasen-Asynchrommotor mit freiem "Zwischenläufer" zwischen Ständer und Läufer verwendet. Der Motor läuft leer an und wandelt dann das Einphasenfeld in ein Drehfeld um, in dem der Innenläufer wie ein normaler Drehstrommotor angelassen wird. Zusätzlich Drehstrommotor mit anderer Polzahl. Nur wenige Gesehwindigkeitsstufen, Pflüssigkeitsanlasser.

4. **Dreistrom** wird für neu einzurichtende Bahnstrecken nicht mehr verwendet. Wohl fallen die Motoren und die Fahrzeugtrunsformatoren leicht aus, doch ist die Stromzuführung schwierig, da die Fahrleitung doppelt ausgeführt sein muß. Die Schiene dient als dritte Leitung.

Energieverlauf und Schaltung bei einer Einphasen-Wechselstrom-Lokomotive

Vgl. "Elektr. Bahnen", 1943, S. 18

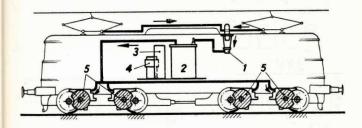
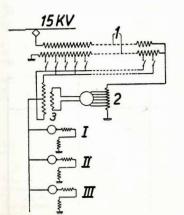



Bild 200. Energieverlauf

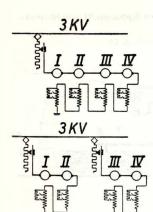

- 1 Hauptschalter
- 2 Haupt-Transformator
- 3 Nockenschaltwerk
- 4 Feinregler
- 5 Fahrmotoren

Bild 201. Schaltung

- 1 Umspanner
- 2 Feinregler
- 3 Spannungsteiler

1-111 Fahrmotoren

a) Bereich der niedrigen Geschwindigkeiten

4 Motoren in Reihe geschaltet, höchste Klemmenspannung eines Motors 3000; 4 = 750 V

b) Bereich der höheren Geschwindigkeiten

Je 2 Motoren in Reihe, die beiden Reihen nebeneinander geschaltet, höchste Klemmenspannung eines Motors 3000: 2 = 1500 V

Bild 202

Anschluß von Gleichstrommotoren an eine 3 kV-Fahrleitung
Nach "Elektrische Bahnen", 1943, S. 19

Wertigkeit der Grundelemente von elektrischen Bahnsystemen Nach Bauer in "Schiene und Straße", Dortmund 1951, S. 51

		Motor (Fahrzeug)	Fahrleitung	Fernleitung	Kraftquellc
Rangfolge	1	Gleichstrom	16 ² / ₃ Hz Wechselstrom	50 Hz Drehstrom	50 Hz Drehstrom
	2	16 ² / ₃ Hz Wechselstrom	50 Hz Wcchselstrom	16 ² / ₃ Hz Wechselstrom	16 ² / ₃ Hz Wechselstrom
Technphysikal.	3	50 Hz Wechselstrom	Gleichstrom	[1]	Umformung aus 50 Hz Drehstrom

Die Leistung des Elektromotors

ist durch die für die Isolierstoffe zulässige Erwärmung begrenzt.

Man unterscheidet (Bild 203 u. 204)

1. die Dauerleistung: Sie kann beliebig lange abgegeben werden,

ohne daß unzulässige Erwärmung auf-

tritt

2. die Stundenleistung: Sie kann — vom kalten Zustand begin-

nend — eine Stunde lang abgegeben werden und liegt etwa 5÷10 % über der

Dauerleistung

3. die Anfahrleistung: Sie kann 5 Minuten lang abgegeben

werden und liegt etwa doppelt so hoch

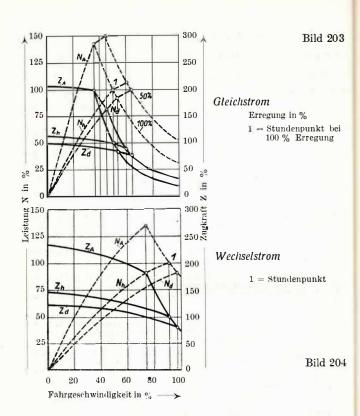
wie die Dauerleistung

4. die Nennleistung: Als solche wird für den Gleichstrommotor die Stundenleistung bei rd. 50 %,

für den Wechselstrommotor die Stundenleistung bei rd. 70 % der Höchstge-

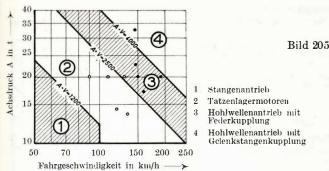
schwindigkeit angegeben.

Bei gleicher Höchstgeschwindigkeit, gleicher Zugkraft und gleichem Reibungsgewicht hat demnach die Wechselstromlokomotive eine um rd. 40 % höhere Nennleistung als die Gleichstromlokomotive und damit ein entsprechend kleineres Leistungsgewicht kg/kW.


Wechselstrom-Kommutatormotoren sind empfindlich gegen Überlastung. Man pflegt daher ihre Leistung neuerdings so hoch zu bemessen, daß die Dauerleistung etwa auf die Haftgrenze bei feuchten Schienen abgestimmt ist und die Anfahrleistung noch etwas über derjenigen für trockene Schienen liegt.

Gegenwärtig lassen sich je Achse für Regelspur bei 1250 mm Treibraddurchmesser und 20 t Achsdruck bis etwa 800 kW für 16^2 ₃ Hz und etwa 600 kW für 50 Hz erreichen. Bei höherem Achsdruck bis zu etwa 1000 kW = 1360 PS für 16^2 ₃ Hz.

Lelstungseinheit: 1 kW (Kilowatt) = 1000 Watt = 1,36 PS 0,736 kW = 736 Watt = 1 PS


Arbeitsverbrauch am Stromabnehmer von elektrischen Lokomotiven der Deutschen Bundesbahn:

auf Steigung	0÷10 °/00	25 °/00
Schnell- und Eilzüge	25÷30 Wh/tkm	bis 55 Wh/tkm
Personenziige	30÷40 Wh/tkm	bis 65 Wh/tkm
Durchgehende Güterzüge	15÷20 Wh/tkm	bis 50 Wh/tkm
Nahgüterzüge	20÷30 Wh/tkm	bis 55 Wh/tkm

Leistungs- und Zugkraftvergleich zwischen Gleichstromund Wechselstromfahrzeugen, auf gleichen Stundenpunkt bezogen

N_d	Dauerleistung	$\mathbf{z}_{\mathbf{d}}$	Dauerzugkraft	
Nh	Stundenleistung	z_h	Stundenzugkraft	
N_A	Anfahrleistung	Z_A	Anfahrzugkraft	

Anwendungsgebiete der verschiedenen Kraftiibertragungsmöglichkeiten bei elektrischen Triebfahrzeugen

Nach Kother in "Elektr. Bahnen" 1941, Ergänzungsheft S. 100.

Die Kraftübertragung vom Motor zur Treibachse

erfolgt beim elcktrischen Triebfahrzeug vorwiegend in Form des Einzelachsantriebes, und zwar durch

Hohlwelle mit Federkupplung (insbesondere "Federtopf"-Antrieb)

Hohlwelle mit Gelenkstangenkupplung

Antrieb erhöht tote Last nicht

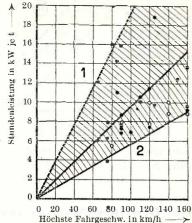
Tatzenlagermotor. Dieser bringt durch den auf der Achswelle lagernden Anteil des Motorgewichts eine Erhöhung der Toten Last mit sich. Bei Verwendung des Tatzenlagermotors wird daher in USA der Achsdruck auf 80 % des sonst zugelassenen Wertes beschränkt.

Beim Schleudern verringert sich das Drehmoment entsprechend der Motorkennlinie, es muß dann die Steuerung auf Null gelegt und erneut angefahren werden.

Stangenantrieb ist an neueren Lokomotiven nur noch verhältnismäßig selten anzutreffen. Antrieb über Blindwelle. Größte Neigung der Treibstange möglichst nicht über 1:5. Raddurchmesser bei Stangenantrieb nach S. 133.

Über die üblichen Anwendungsbereiche der verschiedenen Kraftübertragungsarten siehe obiges Bild 205.

Gewichts- und Leistungsangaben für das Entwerfen elcktrischer Triebfahrzeuge


Nach Kother in "Elektrische Bahnen", 1941, Ergänzungsheft S. 100/101.

Siehe auch Bild 197: "Leistuugsgewicht des Fahrmotors" auf Seite 258.

Bild 206

Antriebsleistung als Stundenleistung in kW je t Leergewicht von Triebwagen plus Anhänger

- 1 Leichtbautriebwagen
- 2 Triebwagen normaler Bauart
- Wechselstrom
- o Gleichstrom

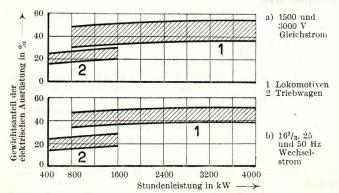


Bild 207. Gewichtsanteil der gesamten elektrischen Ausrüstung am Gesamtgewicht des Triebjahrzeuges in %

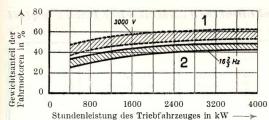


Bild 208

Gewichtsanteil der Fahrmotoren am Gesamtgewicht der elektrischen Ausrüstung

Kurvenband 1 für 3000 V-Gleichstrom Kurvenband 2 für $16^2/_3$ Hz -Wechselstrom Lokomotiven von etwa 1600 kW an

Über elektrische Speicherfahrzeuge s. u. a. Wilke in "Die Bundesbahn" 1952, Seite 351.

Ein Vergleich zwischen elektrischer Lokomotive und Dampflokomotive setzt einwandfreie Vergleichsgrundlagen voraus:

Gleiches Reibungsgewicht, gleichen Verwendungsbereich und etwa gleiche Leistungen.

Der Dauerleistung der elektrischen Lokomotive entspricht die Leistung der Dampflokomotive bei üblicher Heizflüchenbelastung (vergl. S. 106), der Anfahrleistung der elektrischen Lokomotive kann eine erhöhte Heizflüchenbelastung gegenübergestellt werden.

Eine derartige Untersuchung ist auf Seite 270 durchgeführt. Die Überlegenheit der elektrischen Lokomotive bei Dauerleistung ist durch Schraffur hervorgehoben. Bei Anfahrleistung bzw. vorübergehender Höchstleistung erscheinen zwar Dampflokomotive und elektrische Lokomotive im wesentlichen gleichwertig, doch dürfte sich dies im praktischen Betrieb kaum auswirken. Kurzzeitigen Leistungserhöhungen kann der Dampfkessel nicht schnell genug folgen, erhöhte Stromentnahme ist jedoch ohne Zeitverlust möglich. Tatsächlieb zeigt sich demnach die elektrische Lokomotive bei jeder Fahrgeschwindigkeit mehr oder weniger im Vorteil. Das kommt insbesondere in ihrem guten Beschleunigungsvermögen zum Ausdruck und ist u. a. durch das geringere Eigengewicht bedingt.

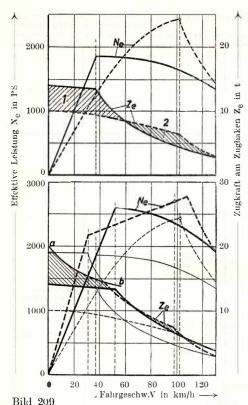
Ungefähre Wirtschaftlichkeitszahlen der Kolbendampflokomotive, bezogen auf 100 % der elektrischen Lokomotive: Erhaltungskosten 150÷250 %. Personalbedarf 200÷300 %. Stückzahlbedarf 150÷300 %, Beschaffungskosten je PS 85÷90 %.

Größte Laufleistungen für deutsche Verhältnisse bei der elektrischen Lokomotive etwa 18÷27000 km/Monat, bei der Daupflokomotive etwa 12÷24000 km/Monat.

Zu Seite 266

Elektr. Lokomotiven mit Henschel-Falurzeugteil

Elektrischer Teil von SSW oder AEG oder BBC


Zahlentafel 38

ı	1-	ozw.					Lauf	werk
I.fd Nr	Type bzw. Reihe			Achs- anord- numg	Eigentümer bzw. Verwen- dungszweck	g Treibrad-		g Gesamt.
1	E 44	1435	20	Bo'Bo'	Deutsche Bundesbahn	1250	3500	9800
2		1435	20,5	$B_0'B_0'$	Deutsche Bundesbahn	1250	3300	11300
3	E 05	1435	20	1'Co1'	Deutsche Reichsbahn		5800	11400
4	E 19	1435	20	$1'D_01'$	Deutsche Bundesbahn		7200	12800
5	-	900	15	B ₀		900	2500	2500
6	·	900	15	Bo'Bo'			1700	8200
7	El 4	900	18,8	B ₀ 'B ₀ '	_	1	2000	9360
8	El 10	900	20	$B_0B_0B_0$	Typisierte Tagebaulokomotiven	950	2600 3000	14800
9	El 2	1435	20,3	B ₀ 'B ₀ '	für Braunkohlen- gruben	1250	2800	9900
10	El 3	1435	25	$B_0B_0B_0$		1050	2700 3000	3400
11	El 1	1435	25	B ₀ 'B ₀ ' + B ₀ 'B ₀ '	J	1120	3000	16200 10000
12	1E	1067	17	B ₀ 'B ₀ '	Südafrikan, Staatsbahn	1220	2800	9400
13	_	1435	20	B ₀ 'B ₀ '	Chile Exploration Co.	1000		6900
14	_	1435	21,3	B₀′B₀′	Kohlenbahn in Japan	1100	2800	11200
5		1435	15	$\mathrm{B_0'B_0'}$	Schieferminen und	1250	2700	11100
16		1435	20	B ₀ 'B ₀ '	Kohlengruben in der	1250	2700	11100
7	- 1	1435	21,3	Bo'Bo'	Mandschurei	1250	2700	11100
8		1676	20,3	Co'Co'	Chilenische Staatsbahn	1100		11900
9	Speicherlok, m. Oberltg.	1435	10,5	B ₀ 'B ₀ '	Kraftwerk Borken (Hessen)	900	2200	6500
0	Speicherlok.	1435	15	Bo	SSW Nürnberg	950	2700	2700

Alle aufgeführten Lokomotiven (außerlfd. Nr. 4) werden durch Tatzenlagermotoren augetrieben. Gl. = Gleichstrom W=Wechselstrom

Typenskizzen auf Seite 392 Lichtbilder auf Seite 373-375

Gewichte		I	Elektr. '	Γeil	Zug	kraft		irge- idigkeit	ú			
r Reibungs-	Pienst- gewicht	Stromart	A Spannung	Stunden- Z leistung	bei Stunden- schieber	k größte	my bei Stunden- W/ leistung	km/h	z kl. Krümmungs- balbmesser	Remerkungen		
80	80	w	15000	2700	13000	20400	56	80	140	Rahmen geschweißt		
82	82	w	15000	4500	6750	27300	130	130	100			
60	90	W	15000	2730	8200	13 500	90	130	180	Rahmen geschweißt		
80	114	W	15000	5500	8300	22000	180	180	180	Hohlwellenantrieb		
30	30	Gl	1200	240	4400	8550	15	25	35			
60	60	Gl	1200	1000	12700	14300	21	40	45			
75	75	Ğl	1200	1000	12000	17000	25	50	80			
120	120	Gl	1200	1500	15500	36000	25	50	100			
80- 100	80- 100	Gl	1200	1550	18000	20000÷ 25000	25	50	80			
150	150	Gl	1200	2100	22000	45000	25	60	100			
2× 100	2× 100	w	6000	4000	32000	80000	26	75	100	Doppellokomotive, Einheiten auch einzeln verwendbar		
68	68	Gl	3000	1416	11200	20000	33	72	80			
80	80	Gl	600	760	12500	21000	15,5	30	80	Stromzuleitung durch Schleppkabel		
85	85	Gl	1200	1300	14600	10000	23,5	50	100			
60	60	Gl	750 1500	1000	9750	16000	26	55	100			
80	80	Gl	750	1300	12730	19000	27	55	100			
85	85	Gl	540	1300	12600	22000	26,5	55	100			
122	122	Gl	1200	1300	24000	40000	30	70	100			
42	42	Gl	1200	600	5800	10000	25	50	50			
30	30	Gl	300	130	4750	7000	7	25	50			

a) Vergleich bei üblicher Dauerleistung

> Dampflok: übliche Heizflächenbelastung

Elektr. Lok: St unden leistung

Fläche 1 Überlegenheit der Dampflok.

Fläche 2 Überlegenheit der elektr. Lok.

b) Vergleich bel vorübergehender Höchstleistung

> Dampflok: erhöhte Heizflächenbelastung

Elektr. Lok: Anfahrleistung Linie a—b:

Linie a—b: Physikalische Reibungsgrenze

Die Überlegenheit der elektr. Lokomotive ist durch Schraffur hervorgehoben.

Vergleich zwischen elektrischer Lokomotive und Dampflokomotive bei 60 t Reibungsgewicht

> 2'C1'-Heißdampf-Zwilling-Schnellzuglokomotive Reihe 11 der Deutschen Bundesbahn

 elektrische 1'Co1'-Wechselstrom - Sehnellzuglokomotive Reihe E 04 der Deutschen Bundesbahn

Die Motorzugförderung mit Verbrennungsmotor

weist folgende Vorziige auf:

Ständige Betriebsbereitschaft

geringes Gewicht des mitzuführenden Brennstoffes einfache Behandlungsanlagen für die Fahrzeuge (Brennstoff wird durch Pumpen übernommen)

hoher thermischer Wirkungsgrad des Motors

Wegfall des Bereitschaftsverbrauches (für Verschiebedienst u. U. ausschlaggebend!)

Ermöglichung größter Schleppleistungen. Es können beliebig viele Lokomotiveinheiten hintereinandergekuppelt und von einer Hand gesteuert werden. Schlepplast nur durch die Zugvorrichtung begrenzt

fast unbeschränkter Fahrtbereich, da keine Auffrischungsarbeiten (Entschlacken usw.) erforderlich.

Ihre Nachteile sind

fehlende Überlastbarkeit des Motors Unfähigkeit des Motors, unter Last anzulaufen hohe Brennstoffkosten hohe Beschaffungskosten für größere Einheiten Beschaffungskosten für die Zugheizung von Lebo

Besonderer Kessel für die Zugheizung von Lokomotivzügen, da anderweitig kein Dampf verfügbar.

Der Verbrennungsmotor

kennzeichnet sich dadurch, daß die Verbrennung im Arbeitsraum stattfindet: Internal combustion engine (im Gegensatz zur Dampfmaschine: External combustion engine).

Motorensysteme

1. Ottomotor

Sowohl als reiner Gasmotor wie als Vergasermotor. Beim Vergasermotor wird Brennstoff im Vergaser oder auch im Verdampfer in gasförmigen Zustand übergeführt. Das zündfertige Gas-Luft-Gemisch wird in den Arbeitszylinder (Brennraum), eingeführt, verdichtet und durch Fremdzündung (elektrischen Funken) zur Verbrennung gebracht.

Bild 210

Die Kennlinien des Verbrennungsmotors ohne Aufladung

- Leistung
- Zugkraft
- Drchmoment

Drehzahl bzw. Fahrgeschwindigkeit ->

2. Dieselmotor

Getrennte Einführung von Brennstoff und Luft, Verdichtung reiner Luft, Einführung des Brennstoffes am Ende des Verdichtungshubes, Zündung durch Verdichtungswärme der Luft.

3. Glühkopfmotor [Übergangsform zwischen 1. und 2.]

Getrennte Einführung von Brennstoff und Luft. Gemischbereitung im Arbeitsraum, Verdichtung des Gemisches, Wandzündung (Zvlinderwandung durch strahlende Wärme des Glühkopfes erhitzt).

Arbeitsverfahren: 1. Zweitakt

2. Viertakt.

Zweitakt kommt für Ottomotoren größerer Leistung kaum in Betracht, da hohe Spülverluste und Zündgefahr.

Beim Dieselbetrieb ist das Zweitaktverfahren konstruktiv einfacher. Es kommt daher für größere Leistungseinheiten billiger, setzt aber wegen des doppelten Durchsatzes den Motor einer erhöhten thermischen Beanspruchung aus (nachteilig für Dichtung und Schmierung!).

Anlassen des Motors

ist unter Last nicht möglich, kann nur im Leerlauf erfolgen. Große Motoren müssen vorgewärmt sein, ehe sie anspringen können.

- Anlassen (= Andrehen) 1. durch Druckluft. Nachteil: Die sich beim Ans
 - strömen ausdehnende Luft briugt an Stelle der erwünschten Erwärmung Abkühlung mit sich.
 - 2. durch andere Hilfsmittel, insbesondere elektrischen Anlasser.

Brennstoffzuführung

Beim Vergasermotor sind an einen Vergaser bis zu 6 Arbeitszylinder angeschlossen.

Beim Dieselmotor hat zumeist ieder Zylinder seine eigene Brennstoffpumpe, die einzelnen Pumpen sind allerdings in einem Gehäuse zusammengefaßt

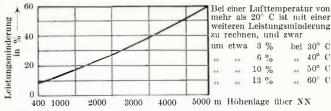


Bild 211

Leistungsabfall von Fahrzeug-Dieselmotoren ohne Aufladung (in Höhenlagen und bei max. 20° C Lufttemperatur) Nach MAN

Vgl. ATZ 1938. Heft 7 und 13. ferner Zinner in MTZ 1950. Heft 13.

Regelung des Verbrennungsmotors (Drehzahländerung)

- 1. quantitativ durch Drosseln des zugeführten Gemisches (nur beim Vergasermotor!).
- 2. qualitativ durch "Abmagerung" des Gemisches, d. h. Änderung des Mischuugsverhältnisses (kommt für alle Motorenarten in Betracht, wird beim Diesel ausschließlich angewendet).

Verdichtungsdrücke und Temperaturen

6-12 atii beim Vergasermotor

12---20 atü beim Mitteldruckmotor, insbesondere dem Glühkonfmotor 20-35 atii beim Dieselmotor

Verbrennungstemperatur je nach Belastung bis 2000°C, Abgastemperatur beim Diesel 600°C

Kühlwassertemperatur in offenen Kühlmittelkreisläufen nicht über 90° C (unter Druek oder bei anderen Kühlmitteln höhere Temperaturen)

Thermischer Wirkungsgrad

 $25\,{}^{\circ}_{\circ}$ beim Ottomotor für Lokomotiv
betricb $35 \div 37\,{}^{\circ}_{\circ}$ beim Dieselmotor für Vollast bis etwa

Kiihlung verursacht Wärmeverlust bis etwa 40 % beim Ottomotor, bis etwa 35% beim Dieselmotor (Kühlung zur Schonung der Baustoffe unvermeidlich). Drehzahl des Motors etwa 500-3000 U/min (vergl. S. 283).

Motorleistung bis etwa 100 PS ie Zylinder (vergl. Seite 283). Leistung verringert sich mit abnehmendem Druck der äußeren Atmosphäre, d. h. mit zunehmender Höhenlage über Meeresspiegel (Bild 211).

Bei Wechselmotoren (Umstellung von Diesel auf Gas) etwa 20-40 % Leistungsverlust.

Durch Aufladung Leistungserhöhung um 20:50 %, kurzzeitig bis 100 %. Aufladung zumeist durch Abgas-Turbine, die mittels Gebläse die Ladeluft vorverdichtet und damit den Kolben bezgl. Verdichtungsarbeit entlastet. (BBC-Büchi-Aufladegruppe = Abgasturbine + Turbogebläse).

Brennstoffverbrauch beim Dieselmotor etwa 160-:-200 g/PSc-h. beim Ottomotor etwa 240-;-260 g/PSe-h bei Vollast, über 300 g bei Teillast. Lehrlauf-Verbrauch bei nmax ~ 1/4:1/5 des Vollast-Verbrauches, bei nmin etwa 1/10.

Motoren-Brennstoffe

Kohlenstaub. — Kohlenstaubmotoren bisher nur für Versuchszwecke, da außerordentlich hoher Verschleiß von Kolben und Zylinderwandungen (Schmirgelwirkung des Brennstaubes). —

2. flüssige Benzin, Spiritus
Benzol, Petroleum

Gasöl, Dieselöl
höhere Erdöldestillate
höhere Braunkohlenteeröldestillate

Klopffeste Ottobrennstoffe sind solche, die bei der gegebenen Verdichtung keine Selbstzündungen (Frühzundungen) befürchten lassen.

3. gasförmlge Generatorgas Sumpfgas Reichgas Reichgas Hottomotoren (= umgestellte Dieselmotoren)

Als Kraftübertragung

zwischen Motor und Treibachse dient ein *Drehmomentwandler*. Er muß zwischengeschaltet werden, damit trotz der konstanten Motordrehzahl eine für den Eisenbahnbetrieb geeignete Zugkraftkurve entwickelt werden kann.

Für den Verbrennungsmotor ohne Aufladung gilt

$$M_d = 716,2 \frac{N}{n} = const$$
 in mkg

für den Fahrzeugmotor überdies

$$M_{
m d} = rac{D}{2 \, i \, \eta} \cdot Z = rac{2,65}{\eta} \cdot rac{V}{n} \cdot Z = const$$
 in mkg

$$N = \frac{ZV}{\eta 270}$$
 in PS $n = 5.31 \frac{1}{D} V$ in U/min

Hierbei ist N = Motorleistung in PS

M_d = Motordrehmoment in mkg n = Drehzahl des Motors in U/mln

= Drehzahl des Motors in U/min = Treibraddurchmesser in m

i = Übersetzung zwischen Motorwelle und Treibrad

η = Wirkungsgrad der Kraftübertragung Z = Zugkraft am Radumfang in kg

= Fahrgeschwindigkeit in km/h.

Als Kraftübertragungsarten für den Zugbetrieb kommen in Betracht

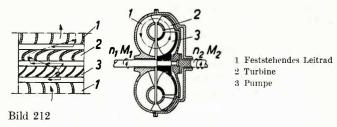
- 1. die mechanische
- 2. die hydraulische
- 3. die elektrische
- 4. Kombinationen obiger Punkte 1÷3

Über die mit den Kraftübertragungsarten 1÷ 3 erzielten Wirkungsgrade siehe Bild 215/17.

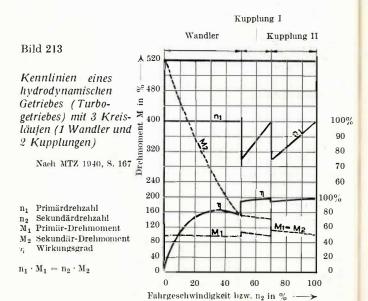
Druckluftübertragung, bei der Motor einen Luftverdichter antreibt und die Druckluft ähnlich dem Dampf der Dampflokomotive in Zylindern arbeitet, hat sich bisher — gesamtwirtschaftlich betrachtet — nicht bewährt.

 ${\it Unmittelbarer}$ Antrieb (ohne zwischengeschalteten Drehmomentwandler) ist bisher über das Versuchsstadium nicht hinausgekommen.

1. Die mechanische Kraftübertragung mit Zahnradstufengetriebe hat den Vorteil hohen Wirkungsgrades (etwa 92 \div 96 %), unterteilt aber die Zugkraftlinie in elnzelne Stufen, so daß die eingebaute Motorleistung nur an der oberen Schaltgrenze voll ausgenutzt wird. Die Leistungsk urve verlä uft sägeförmig. Beim Schalten, d. h. dem Übergang von einer Schaltstufe zur anderen. wird die Zugkraft unterbrochen (Z=0). Vereinzelte Sondergetriebe vermeiden diese Unterbrechung (Vorwähler-Getriebe, Überholungskupplungen).


Die obere Grenze, bis zu welcher die mechanische Kraftübertragung sowohl technisch wie wirtschaftlich mit Erfolg angewendet werden kann, liegt bei etwa $300 \div 400\,$ PS Leistung.

 Die hydraulische Kraftibertragung zeichnet sich durch geringes Baugewicht aus. Es werden fast ausschließlich hydrodynamische Getriebe nuch dem Föttinger-Prinzip angewendet (Bild 212).


Ein derartiges Getriebe bezeichnet man als "Wandler", wenn es das von der Antriebswelle eingeleitete Drehmoment entsprechend der gewünschten Drehzahl der Abtriebswelle ändert. Das Drehmoment der Abtrieb sweilesinkt mit steigender Drehzahl (Bild 213), die Zugkraft verläuft in einer für Bahnbetrieb geeigneten Linie.

Haben Antriebs- und Abtriebswelle annähernd gleiche Drehzahl, findet also keine hydraulische Drehmomentenwandlung statt, so liegt eine "Kupplung" vor. Sie entspricht in ihrer Wirkung der Schaltstufe beim mechanischen Getriebe. Die Zugkraft bleibt trotz Veränderung der Drehzahl bzw. der Fahrgeschwindigkeit konstant.

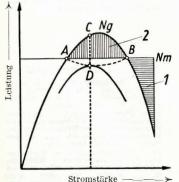
Durch Hintereinanderschalten von Wandlern und Kupplungen lassen sich die jeweils günstigsten Zugkraftlinien verwirklichen. Beim Übergang vom Wandler zur Kupplung bzw. umgekehrt weist die Zugkraftkurve einen Knick auf, ebenso beim Übergang zwischen zwei Wandlem. Hintereinandergeschaltete Kupplungen ergeben Zugkraftstuïen, wie sie vom mechanischen Stufengetriebe her bekannt sind. Einen nachgeschalteten Wandler bezeichnet man im Gegensatz zu dem für die Anfahrperiode maßgebenden als "Marschwandler".

Schema eines hydraulischen Wandlers nach dem Föttinger-Prinzip Nach MTZ 1940, S. 165

Wirkungsgrade (vergl. Bild 213 und 215/17):

Wandler 0.76% i e nach der Drehzahl Marschwandler 70.85% i e nach der Drehzahl Kupplung 90.96% i e nach der Drehzahl

Das hydrodynamische Getriebe ist *nicht umsteuerbar*, es bedarf daher für der Fahrtrichtungswechsel der Ergänzung durch ein mechanisches Wendegetriebe.


3. Die elektrische Kraftübertragung ermöglicht beste Annäherung an einen stetigen Zugkraftverlauf, sie erfordert aber hohes Baugewicht und ist im Wirkungsgrad ungünstiger als die mechanische oder zumeist auch die hydraulische Kraftübertragung.

Wirkungsgrad 0÷80 % je nach der Drehzahl bzw. der Fahrgeschwindigkeit.

Der mit dem Verbrennungsmotor elastisch gekuppelte Generator erzeugt Gleichstrom von vorzugsweise 600 Volt Spannung. Er ist als Compound-Generator (Doppelschluß-Generator) zumeist mit zusätzlicher Fremderregung durch Hilfserregermaschine ausgebildet.

Die mangelnde Übereinstimmung zwischen den Kennlinien des Verbrennungsmotors und des Generators führt im Bereich der Überschneidung (AB, s. unten, Bild 214) zu einer Überlastung des Motors, daher langsamer Lauf des Motors ("Drebzahldrickung"), verringerte Motorleistung, geringere Stromerzeugung. Bei Generatorleistungen, die die Motorleistung nicht übersteigen, tritt diese Erscheinung nicht auf.

Für die elektrische Steuerung sind verschiedene Systeme entwickelt worden,

Ng Generatorleistung

Nm Leistung des Verbrennungsmotors

1 Nicht ausgenutzte Motorleistung

2 Potentielle Generatorleistung

 Leistungsscheitel des Verbrennungsmotors infolge Drehzahldrückung
 Leistungskurve des Generators geht ebenfalls durch D

Bild 214. Leistungsaufnahme des Generators

Nach "Elektr. Bahnen" 1934, S. 240

Kennlinien verschiedener Kraftübertragungsarten

Nach ZVDI 1935, S. 1286

- a Mechanisches Stufengetriebe
- b Hydrodynamisches Getriebe (Wandler + Kupplung)
- c Elektrische Kraftiibertragung



Bild 215. Wirkungsgrad

Bild 216. Ausnutzungsfaktor

= Verhältnis der von einem Getriebe gemäß seiner Eigenart aufgenommenen Primärleistung zur Volleistung des Verbrennungsmotors

Bild 217. Übertragungsgrad

Zu a) Übertragungsgrad = Getriebe-Wirkungsgrad × Wirkungsgrad des Wendeachsantriebes (einschl. Kardanwelle) × Ausnutzungsfaktor.

Zu b) Übertragungsgrad — Getriebe-Wirkungsgrad × Wirkungsgrad der Hochübersetzung × Wirkungsgrad des Wendeachsantriebes (einschl. Kardanwelle) × Ausnutzungsfaktor.

Zu c) Übertragungsgrad = Wirkungsgrad des Stromerzeugers × Wirkungsgrad des Bahmnotors × Wirkungsgrad des Vorgeleges des Bahmnotors × Ausnutzungsfaktor × Gewichtsfaktor (Gewichtsfaktor zur Berücksichtigung des höheren Gewichts der elektrischen Kraftubertragung im Versleich zur mechamischen und hydraulischen).

Die amerikanische Diesellokomotive für Vollbahnen

arbeitet vorwiegend mit elektrischer Kraftübertragung. Es sind Einheitstypen für vorzugsweise 600, 1000, 1500 und 2000, (neuerdings 800, 1200, 1500 und 2250) PS Leistung entwickelt worden. Höhere Leistungen werden durch Zusammenkuppeln verschiedener Einheiten zu einer geschlossenen, von einmer Hand zu steuernden Gruppe erzielt. Den jeweiligen Betriebsverhältnissen (Schnellzug-, Personenzug-, Güterzugdienst) werden die Lokomotiven durch entsprechende Wahl des Übersetzungsverhältnisses für die Zahnräder angepaßt, die zwischen Fahrmotor (Elektromotor) und Treibachse geschaltet sind (Bild 218).

Die amerikanische Vollbahn-Diesellokomotive ist ohne Rücksicht auf historischen Ballast durchtypisiert. Diese Vereinheitlichung dürfte das Vordringen der Motorzugförderung in USA entscheidend beeinflußt haben.

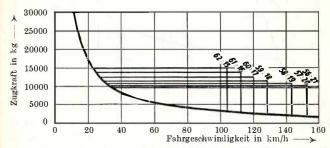
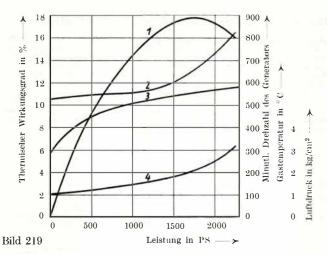


Bild 218. Zugkraft einer Diesel-elektrischen 1500PS-Lokomotive für Güter- und Schnellzugdienst mit verschiedenen Übersetzungen zwischen Fahrmotor und Antriebswelle


Nach MTZ 1949, Beiheft 1, S. 22

Die Gasturbinenlokomotive

zeigt gegenüber der Diesellokomotive folgende

Vorteile: Einfachen Aufbau der Gasturbine — keine störenden Bewegungen — voraussichtlich geringere Unterhaltungskosten — geringen Schmierölverbrauch — Verwendung billiger Brennstoffe (Heizöl, Kohlenstaub) — voraussichtlich geringeren Kapitalaufwand — Wegfall des Kühlers

Nuchteile: Ungünstigeren thermischen Wirkungsgrad und hohen Leerlauf-Verbrauch (etwa 30 % der Vollast) — daher hohen spezifischen Treibstoff-Verbrauch und höhere Treibstoffkosten trotz des an sich geringeren Treibstoffpreises — Hilfsdieselmotor zum Anlassen — Anfälligkeit der Turbinenschaufeln gegenüber den heißen Gasen (Kühlung!) — störendes Auspuffgeräusch — Vorwärmen des dickflüssigen Treibstoffes, daher erhöhte Lager- und Bevorratungskosten.

Schaulinien für die Gasturbine der BBC-Lokomotive der SBB Nach MTZ 1942, 8, 476

- 1 Thermischer Wirkungsgrad, bezogen auf die Generatorkupplung
- 2 Drehzahl des Generators
- 3 Temperatur der Gase am Eintritt in die Turbine
- 4 Luftdruck, gemessen am Druckstutzen des Gebläses.

Die Wirkungsweise der Gasturbinenanlage am Beispiel der BBC-Lokomotive der Schweizerischen Bundesbahnen (nach Steiner in MTZ 1942, S. 474. — Vergl. nebenstehendes Bild):

Das als Treibmittel verwendete Gas entsteht in der Brennkammer 3 durch Verbrennung von billigem Heizöl unter Zufuhr von Heißluft, die teils als Verbrennungsluft dem Verbrennungsvorgang den nötigen Sauerstoff liefert, teils dem Luft-Gas-Gemisch zur Herabsetzung der Temperatur beigemischt wird. Hierzu verdichtet der von der Gasturbine 4 angetriebene Luftverdichter 1 die angesaugte atmosphärische Luft auf etwa 3 atü und fördert sie über den Luftverwürmer 2 in die druckfeste Brennkammer. Das in der Brennkammer erzeugte

Verbrennungsgas-Luft-Gemisch von 550—600° C gibt seine Arbeitswärme durch Entspannung an die Laufräder bzw. die Welle der Turbine als Drehmoment ab, das der Stromerzeugungsgruppe 6 über ein Reduktionsgetriebe 5 zugeleitet wird. Beim Arbeiten des Gasgemisches sinkt dessen Temperatur auf etwa 350° C. Die Abgase werden zum Vorwärmen der Arbeitsluft benutzt, bevor sie mit etwa 250° C ins Freie entweichen.

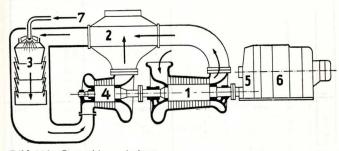


Bild 220. Gasturbinen-Anlage

- 1 Luftverdichter
- 3 Brennkammer 4 Gasturbine
- 5 Reduktionsgetriebe

2 Luftvorwärmer

- 6 Generatorgruppe
- 7 Brennstoff-(Heizöl-)Zuleitung

Bis Mitte 1952 waren folgende Gasturbinenlokomotiven entwickelt:

- (1A) Bo (A 1)-Lokomotive der Schweizerischen Bundesbuhnen, fertiggestellt 1941, Erbauer: Brown, Boveri & Comp., Baden/Schweiz. — Elektrische Kraftübertragung, Höchstgeschwindigkeit 110 km/h, Dienstgewicht 92 t, Dauerleistung an der Turbinenwelle 2200 PS, Drehzahl der Turbine 4800÷5200 U/min.
- (A1A) (A1A)-Lokomotive der British Railways, Western Region, fertiggestellt 1949, Erbauer: Brown, Boveri & Comp., Baden/Schweiz. —
 Elektrische Kraftübertragung, Höchstgeschwindigkeit 145 km/h, Dienstgewicht 115 t, Dauerleistung an der Turbinenwelle 2500 PS, Drehzahl der Turbine 5300 U/min.
- (Bo Bo) (Bo Bo)-Lokomotive der Union Pacific Railroad USA, fertiggestellt 1949, Erbauer: Alco-General Electric. — Elektrische Kraftübertragung. Höchstgeschwindigkeit 127 km/h, Dienstgewicht 227 t, Dauerleistung an der Turbinenwelle 4800 PS, Drehzahl der Turbine 6700 U/min. — Zehn Lokomotiven wurden nachbestellt.

Fortsetzung auf Seite 284

HENSCHEL-Motorlokomotiven

Dieselmotor

von Henschel bei Nr. 1-15.

von Gebr. Sulzer AG., Winterthur bei Nr. 17—20 und 22 von Motoren-Werke Mannhelm bei Nr. 16 und 21 von Kämper-Motoren AG, Berlin-Marienfelde bei Nr. 23 Zahlentafel 39

								Laufv	verk
	Lfd. Nr.	Achsanordnung	imds nun	+ Achsdruck	Type	Eigentümer bzw. Verwendungszweck	Freibrad-		Gesamt-
	1	В	500-760	1,6	DG 13	Baulokomotive	380	780	780
otiven	2 3	B B	550-760 1435	2,7 3,1	}DG 26	Baulokomotive Verschiebelokomotive	380 550	890	
Henschel-Motorlokomotiven	5 6	B	600-760 800-1000 1435			Baulokomotive Verschiebelekomotive	500	1000 1150 1500	1150
1-Mo	7	В	1435	7,5	DG 65R	Verschiebelokomotive	850	2500	2500
	8 9 10 11 12	B C D	1435 1435 1435 1435 1435	14 13,5 14	DH 110 DH 200 DH 360 DH 550 DH 800	Verschiebelokomotive Versch u. Streckenlok	1150 1150 1150	2500 2800 4000 4200 4200	2 800 4 000 4 200
Typisierte	13 14 15 16	B B B ₀ C ₀	1435 1435 1435 1435	11 15	DEL 80 DEL 110 DEL 150 DEL 220	Verschiebelokomotive	850 950	2500 2500 3000 3670	2 500 3 000
Sondertypen	17 18 19 20 21	B ₀ B ₀ B ₀ B ₀ A1A A1A A1A A1A C	1000 1676 1000 1000 1435 1435	12 14.4 10.9 12 15		Siamesische Staatsb. Rosario (Argentinien) Siamesische Staatsb. "" Ägyptische Staatsb. Rumänische Staatsb.	914 914 914 1150	3000 4000	9300 7900 10400 10800 4000 26000
So	23	B ₀	1435	16	Diesel- elektr. Spelcher- lok	Verschiebelokomotive	1000	3000	3000

Antrieb der Treibachsen durch Ketten bei Nr. 1-7, 13-16 und 21 durch Stangen über Blindwelle bei Nr. 8-12 durch Tatzenlagermotoren bei Nr. 17-20, 22 und 23 hydrodynamische Turbogetriebe System Voith

Typenskizze auf Seite 406 - Bilder auf S. 376, 377, 405 und 406

Gewicht		Dieselm	otor	K	raf	tübe	ertrag	ung				·sa-	
wicht	cht	ng	ei ng			G	lesch keit	windi im	ig-	skeit	Zugkraft	ümmun	Bemer-
Reibungsgewicht	Dienstgewicht	Dauerleistung	Drehzahl bei Dauerleistung	Art	Gangzahl	1. Gang	1. Gang 2. Gang 3. Gang 4. Gang			Höchst- geschwindigkeit	Größte	Kleinst, Krümmungs- halbnesser	kungen
t	t	PS	U/min.				km	/h		km/h	kg	m	
3,2	3,2	15	1000	mech.	4	3	5	8	13	13	750	8	
5,4 6,2	5,4 6,2	30 30	1000 1000		4	3	5 5,5	8	15 17	15 17	1 350 1 500	10 30	
7-10 8-10 10	7-10 8-10 10	39 39 39	1300 1300 1300	"	4 4 4	3 3,5	6 6 6,6	12 12 12,7	18 18 20	18 18 20	2 400 2 400 2350	12 12 30	-1
15	15	70	1100	,,	4	5	10	15	30	30	2650	50	Einheitsbai art der DB
16 28 40 56 64	16 28 40 56 64	110 200 360 550 800	1250 1200 600 600 1400	hydr.			11111			25 30/60 30/60 30/60 40/80	5000 8800 13500 18500 21000	50 50 80 100 100	Voith- Turbo- getriebe
16 22 30 40	16 22 30 40	80 110 150 220	1200 1300 1400 1000	elektr.						30 30 30 30	4 400 6 300 8 500 11 800	50 50 80 100	Elektr. Aus- rüstung
48 57.5 43.3 48 45	48 57,5 60,3 64 45 230	735 330 450 960 380 2×2200	850 700 700 850 600 700	elektr. hydr. elektr.		- 1 1 1 1 -				65 45 60 65 25/50 100	10000 14000 9400 14000 14100 36000	100 50 150 150 80 200	B Oerlikon Blektr.
32	32	100	1200	Л,		-	-	-	_	20	5500	60	ssw
												Car at to	

- (Co) (Co)-Lokomotive der British Railwans, Western Region, fertiggestellt 1950. Erbauer: Brown, Boveri & Comp., Baden/schweiz und Metropolitan-Vickers Electrical Co. Ltd. — Elektrische Kraftitibertragung, Höchstgeschwindigkeit 145 km/h, Dienstgewicht 120 t. Dauerleistung an der Turbinenwelle 3500 PS. Drehzahl der Turbine 7000 Urbin.
- BoBoBoBo-Lokomotive, USA, fertiggestellt 1950, Erbauer: Westinghouse. Elektrische Kraftübertragung, Höchstgeschwindigkeit 160 km/h, Dienstgewicht 208 t, Dauerleistung an der Turbinenwelle 4000 PS, Drehzahl der Turbine 8750 U/min.
- 6. (Bo)(Bo)-Lokomotive, Frankreich, fertiggestellt 1951, Erbauer: Régie Nationale des Usines Renault. — Mechanische Kraftübertragung, Achsantrieb über Gelenkwellen. Freikolben-Verdichter. Höchstgeschwindigkeit 125 km/h, Dienstgewicht 54 t, Dauerleistung an der Turbinenwelle 1000 PN, Drehzahl der Turbine 12000 U/min.

Die Kohlenstaubturbine

läßt gegenüber der mit Öl betriebenen Gasturbine höhere Wirtschaftlichkeit crwarten entsprechend den geringeren Brennstoffkosten.

Spezifische Brennstoffkosten

Nach Giger in "Schweiz. Bauzeitung" 1949-II. S. 487

Zahlentafel 40

Lokomotiv-Bauart	Gesamt- Wirkungs- grad	Unterer Heizwert kcal/kg	Brennstoffkosten 194 je t s je 1000 Ps		
Klassische Dampf- lokomotive Dieselelektrische Lokomotive Gasturbinenlokomotive Öl Gasturbinenlokomotive Kohle	7÷10 27 21 20	7 500 10 800 9 800 7 500	4,5 18,6 12,2 4,5	5,50 4,25 3,65 1,91	

Mit der Entwicklung von kohlenstaubgefeuerten Gasturbinen-Lokomotiven befaßt sich in USA das "Locomotive Development Committee" der "Bituminous Coal Research lne". Es wurden (bis Ende 1951) Aufträge auf zwei verschiedene Lokomotiven erteilt; Eine Lokomotive mit 4200 PS an der Turbinenwelle bei rd. 700° Gastemperatur und 5700 U/min wird von der Allis Chalmers Manufacturing Co., Milwaukee, entwickelt; die zweite Lokomotive von rd. 3750 PS von der Elliot Co., Jannette, Pennsylvania.

In England wird ebenfalls an der Entwicklung einer kohlengefeuerten Gasturbo-Lokomotivc gearbeitet: (Co)(Co)-Lokomotive mit mechanischer Kraftiibertragung, Achsantrieb über Gelenkwellen. — Zwei Geschwindigkeitsstufen: Höchstgeschwindigkeiten 80 und 120 km/h. Dienstgewicht 117 t, Dauerleistung an der Turbinenwelle 1800 PS. — Voraussichtlicher Wärmewirkungsgrad bei Vollast 19%, bei Halblast 16%, bei Zehntellast 10%.

Zahlentafeln

Maße und Gewichte (Englische Maße s. Zahlentafel S. 304/5)

1. Längen-Maße

Zahlentafel 41

A. Metrische:

Die Einheit bildet das Meter (m), d. i. der zehnmillionste Teil eines Erdmeridianquadranten, des kürzesten Bogens von einem Pol zum Aquator.

$$1 \text{ m} = 100 \text{ cm} = 1000 \text{ mm}$$

1/10 m	int	1 Dezimeter (dm)	10 m	=	1 Dekameter
1/10 dm	=	1 Zentimeter (cm)	100 m		1 Hektometer
1/10 cm	=	1 Millimeter (mm)	1000 m	=	1 Kilometer

B. Nicht metrische:

```
1 neue geographische Meile = 7420 m
1 preußische Meile = 7532 m
1 preußische Elle = 25.5 \text{ Zoll} = 0.67 \text{ m}
1.5 preußische Elle = 3.19 preußische Fuß = 3.28 englische Fuß = 1 m
1 preußischer Fuß = 12 Zoll = 144 Linien = 0,314 m
1 bayerischer Fu\beta = 12 Zol1 = 0.29186 m
1 englische Meile (Statute mile) = 1760 vards = 1609.32 m
1 englischer yard = 3 feet zu 12 inches = 91,4 cm
1 \text{ englischer Zoll} = 2.54 \text{ cm}
1 Welt-Seemeile = 1853,18 m (1 Seemeile/h = 1 Knoten)
1 französische Seelinie = 3 Seemeilen = 5.565 km
1 Äquatorgrad = 15 geographische Meilen = 111.306 km
1 Meridiangrad im Durchschnitt = 60 Seemeilen = 111.1206 km
1 russische Werst = 1500 Arschinen = 500 Saschehn = 1066.80 m
1 russische Saschehn = 7 Fuß zu 12 Zoll = 2.133 m
1 dänische Meile = 7.532 km
1 norwegische Meile = 18000 norwegische Ellen = 11,295 km
```

2. Flächen-Maße

1 schwedische Neumeile = 10 km

Die Einheiten bilden das Quadratmeter, das Quadratzentimeter und das Quadratmillimeter.

1 geographische □-Meile = 55,06 km² 1 deutsche □-Meile = 56,25 km² 1 engl. Acre = 160 Square Rods = 40,468 a 1 österreichisches Joch = 400 □-Ruten = 57,554 a 1 russische □-Werst = 1,138 km²

1 USA. Acre = 4840 sq. Yards = 40,47 a

3. Körper-Maße

Die Einheiten bilden das Kubikmeter, das Kubikzentimeter und das Kubikmillimeter.

1 Kubikmeter = 1000000 Kubikzentimeter (das Kubikmeter wird auch Festmeter bzw. Raummeter genannt)

 $1 \text{ Klafter} = 108 \text{ Kubikfuß} = 0.338 \text{ m}^3$

4. Hohl-Maße

Die Einheit bildet das Liter (1); dasselbe enthält den Raum von 1000 Kubikzentimetern oder 1 Kubikdezimeter.

1 Kubikmeter = 10 Hektoliter (hl) = 1000 l

1 hl = 1,819 preußischer Scheffel = 87,3 Quart = 100 l 1 preußischer Scheffel = 16 Metzen = 48 Quart = 54,96 l

1 Tonne (Schiffsmaß) = 4 Scheffel = 2,198 hl

1 Oxhoft = 1,5 Ohm = 3 Eimer = 6 Anker = 180 Quart = 206,11

5. Gewichte

Deutschland

Die Einheit bildet das Gramm. Das Gramm ist das Gewicht eines Kubikzentimeters destillierten Wassers im luftleeren Raume bei 3,4° R; mithin ist 1 kg das Gewicht eines Liters Wasser.

1 t (Tonne) = 1000 kg	F
1 kg = 1000 g	Amerika u. England
1 g = 1000 mg (Milligramm)	siehe Zahlentafel S.304/5
1 dz (Doppelzentner) = 100 kg	
1 hg (Hektogramm) = 100 g	
1 Ztr. (Zentner) = 100 Pfd. (Pfund)	Indien
1 Pfd. = $30 \text{ Lot} = 300 \text{ Quentchen} = 500 \text{ g}$	1 Md (Mound)
1 Karat = etwa 205 mg	= 82 lbs. = 37.195 kg
1 IInze = etwa 31 1 g	= 82 lbs. = 37.193 kg

Rußland: 1 Pud = 40 Pfd. je 32 Lot je 3 Solotnik = 16,380 kg

6. Leistungseinheiten

1 PS = 75 mkg/sec = 736 Watt = 0,1757 kcal/sec

1 Watt = 1 Voltampère = $\frac{1}{736}$ PS = 0,102 mkg/sec = 0,24 cal/sec

1 Kilowatt = 1000 Watt = 1,36 PS = 0,24 kcal/sec \sim 102 mkg/sec

1 englische bzw. amerikanische Pferdestärke (HP) = 1,014 PS = 76,04 mkg/sec

7. Arbeitseinheiten

1 Wattsekunde = 1 Joule = 0,102 mkg 1 Wattstunde = 367 mkg = 3600 Joule

1 Kilowattstunde = 1,36 PS-Stunde = 860 kcal \sim 367 000 mkg

8. Französische Einheit für den Kesseldruck

1 hpz (hectopièze) = 100 pièzes = 1.02 kg/cm^2

 $1 \text{ pièze} = 1 \text{ stène/m}^2 = 102 \text{ kg/m}^2$

Spezifische Gewichte, Volumina und Schmelzpunkte

Gegenstand	Spez. Gewicht	Spez. Volumen	Schmelz- punkt
Aluminium	2,6	0,385	657°
Anthrazit	1,4-:-1,7	0,725	
Antimon	6,7	0,150	430°
Arsen	5,7	0,176	
Asbest	2,12,8	0,48-;-0,36	
Asbestpappe	1,2	0,832	0
Asphalt .	1,1-:-1,5	0,91-:-0,67	100°
Baumwolle lufttrocken	1,5	0,665	
Benzin	0,69-0,71	1,45-:-1,41	
Benzol	0,89	1,12	
Bernstein	1,01,1	1,00,91	
Beton.	1,82,45	0,55-:-0,41	327°
Blei	11,3	0,089	321
	6,7	0,149 0,83-:-0,67	
Braunkohle	$1,2\frac{.}{0}1,5$		900°
Bronze (mit 14 % Zinn)	8,9 2,26	0,113 0,442	900
Chilesalpeter Deltametall	2,26 8.6	0,442	950°
	0,88 - 0,92	1.141.09	930
Eis. Erde lehmig	1,62,0	0,63-:-0,5	
mager, trocken	1.34	0.745	
Flußeisen	7.85	0.128	1350-:-1450
Flußstahl	7,86	0,127	1300-:-1400
Glas	2.42.6	4.16-:-3.85	8001400
Glas (Kristallglas)			000 , 1400
Granit	2,93,0 2,513,05	3,453,33 3,963,28	
Graphit.	1.9-2.3	5.314.35	
Gummi .	1,9÷2,3 1,0÷-1,45	5,314,35 10,690	
Gußeisen	7.25	0.138	1100-:-1200
Heizöl	$0,9 \div 1,1$	1,11-:-0,91	· ·
Holz, Eiche	0.69-:-1.03	1.45 -0.07	
Fichte.	$0.35 \div 0.60$ $0.31 \div 0.76$	$\begin{array}{c} 1,43 - 0,87 \\ 2,86 \div 1,67 \\ 3,22 \div 1,32 \\ 1,21 \div 1,18 \\ 2,70 \div 1,33 \end{array}$	
Kiefer	0,310,76	3,221,32	
Pitch-pine	$0,83 \div 0,85$	1,21 - 1,18	
Tanne.	0,35-:-0,75	2,70÷1,33	
Kalk	0,9-:-1,3	1,11-:-0,77	
Kalksandstein	1,9	0,526	
Kalziumkarbid	2,26	0,443	
Koks	1,4	0,714	
Kork	0,24	4,17	10040
Kupfer	8,9 - 9,0	0,1120,111	1084°
Leder	0,86-:-1,0	1,16÷1,0 0,87÷-0,77	
Linoleum	1,151,3	0,870,77	1
Magnesia	3,2	0,313	

Gegenstand	Spez. Gewicht	Spez. Volumen	Schmelz- punkt
Marmor	2,5÷2,85	0,4-:-0,352	
Mehl lose	0,5	2.0	
zusammengepreßt	0,7 = -0.8	1,421,25	
Mennige	8,69,1	0,1160,11	
Messing (32 % Zink)	8,7	0,115	900°
Mineralschmieröl	0,9-:-0,93	$1,11 \div 1,07$	
Naphta .	0,76	1.32	
Papier .	0.7 - 1.15	1.43-:-0.87	
Petroleum	0.79 - 0.82	$1,27 \div 1,22$	
Phosphorbronze	8,8	0.114	980-1000°
Porzellan	2,3-:-2,5	0.435-:-0.4	000 , 1000
Preßkohle (Brikett).	1,25	0.8	
Schamottesteine	1,85	0.540	
Schie pulver lose	0,9	1.11	
gestampft	1,75	0.572	
Schweißeisen	7,8	0.128	15001600°
Schweißstahl	7,86	0,127	13001400°
Spiritus.	0.81	1,235	1000 , 1100
Stahl	7,86	0,127	1300-:-1400°
Stahlguß .	7,5	0.133	1000 . 1100
Steinkohle	1,2-1,5	0.83-:-0.67	
Steinkohlenbriketts	1,25	0.8	
Torf	$0.64 \div 0.84$	1,56 - 1,19	
Weißmetall	7,1	0.141	365°
Wismut	9,82	0.102	269°
Zement abgebunden	3,0	0.333	200
gepulvert .	1,9	0,525	
Ziegel	1,41,6	0.7150.625	
Zink	6,867,2	0,1460,139	419°
Zinn	7,2	0.139	232°
Zinnober	8,12	0.123	-02
Zucker	1,61	0.622	

Abmessungen und Gewichte von Steinen

Zahlentafel 43

1 Normal-Backstein hat die Größe 25×12×6,5 cm (Reichsmaß).

1 Vollstein (ohne Löcher) wiegt 2,25 bis 2.75 kg; 1 m³ hiervon, d. h.

1×1×1 m dicht zusammengefügt, 1130 bis 1380 kg = rd. 500 Stück.

1 Lochstein wiegt 2,0 bis 2,4 kg; 1 m³ 1000 bis 1200 kg = rd. 500 Stück.

Pflastersteine werden im allgemeinen in folgenden Abmessungen verwendet:

Basaltsteine 1 Stück 5 kg; 1 m³ = rd. 2600 kg = 520 Stück.

Kupferschlackensteine 16 × 16 × 12 cm hoch: 1 Stück = 7,67 kg;
1 m³ = rd. 2500 kg = 326 Stück.

Gewichte und Stauräume geschichteter Körper

Ladung	Gewicht kg/m³	Stauraum m³/
Äpfel	300	3,33
Asche	1420	0,7
Asphalt	1750	0,57
Basalt	2700-3000 435-1000	$0.37 \div 0.33$
Baumstämme, lose	4351000	$0,37 \div 0,33$ $2,3 \div 1$
Baumwolle ungepreßt	208332	4.8-:-3.1
gepreßt	385 ÷ 555	2,6-1,8
Beton mit Ziegelbrocken	1800	0,55
mit Kalksteinbrocken	2000	0,5
mit Granitbrocken	2200	0,455
Brauneisenstein	3000	0,333
Braunkohle	650 - 780	1,54-;-1,28
Braunkohlenstaub	1000	1,0
Brennholz, Buche	400	2,5
Eiche	420	2,38
Fichte	320	3,12
Bruchsteine	2000	0.5
Briketts von Braunkohle	900 ÷ 1000	$1.11 \div 1.0$
von Steinkohle.	10001100	1,11÷1,0 1,0÷-0,9
Buchenholzscheite	400	2.5
Chlorkalk	750	1.33
Eichenholzscheite	420	2.38
Eis	665	1,5
Eisenerz, mulmig	2000	0,5
	2100	0,475
Erde, Sand, Lehm, naß	1600	0.625
getrocknet	1400	0,715
Fichtenholzscheite	320	3.12
Fleisch	285-665	$3,5 \div 1,5$
Früchte (Äpfel, Birnen, Pflaumen)	$285 \div 665$ $300 \div 350$	3,3-:-2,83
Getreide, Gerste geschittet	690	1.45
Hafer geschüttet	430	2,32
Roggen geschüttet .	680 -7 90	1,471,27
Weizen geschüttet	700800	1,43-1,25
Granit	2700	0.37
Heu	100	10.0
Holz	300÷350	3,3-;-2,85 6,7-;-4,5
Holzkohle	150220 12001300	6,7-4,5
Kalk, gebrannt	1200 - 1300	0,83-0,77
Kalk- und Bruchsteine	2000	0,5
Kartoffeln	650 -7 00	1,54-:-1,43
Kies, naß	2000	0,5
trocken	1700	0,58
Kohlen, schlesische	760÷800 720÷800 800÷860	$\begin{array}{c} 1,31 \div 1,25 \\ 1,39 \div 1,25 \\ 1,25 \div 1,16 \\ 2,77 \div 1,88 \end{array}$
Saar	720-800	1,39-1,25
Ruhr-	800 - 860	1,25-1,16
Koks	360÷530	2,77-1.88
Koksasche	700	1,43
Lehmboden, naß.	1900	0,52
trocken	1500	0.67
Malz .	550	1,82

Fortsetzung:

Gewichte und Stauräume geschichteter Körper

I	adı	ıng										Gewicht kg/m³	Stauraum m³/
Mist		Ų.		:15		· i	14	¥			S.	850	1.18
Mörtel	16					100	100	(4)	40			1700÷1800	$0.59 \div 0.55$
Mörtel												10001100	1,0 -0,9
Roheisen							36					6500 . 7800	$0.154 \div 0.128$
Riiben	2.0	4				į.	040	(+)	*			570÷650	$1,75 \div 1,53$
Salpeter												1000	1,0
Salpeter Sand, Lehm, Erde, r	aß									-		2100	0,475
1	ati	irli	ch	f€	eu	ch	t	9	*:	4.3	en.	1600	0,625
Schlacken und Koks	etr	ock	me	ŧ								1400	0,715
Schlacken und Koks	ascl	ne										600	1.67
Schwefelkies													0.295
Schwemmsteine				en e					-			850	1,18
Schwemmsteine Steingeröll	10		į.		6			9		1		1800	0,555
Steinsalz, gemahlen.	10			900		- 4				2		1015	0,98
Stroh												80	12,5
Stroh	82	0	2		V		9		-			2000	0.5
trocken	12	40		0.0	63	63	100		*	40		1600	0.625
Torf, lufttrocken						100						$325 \div 410$	3,0-2,45
Torf, lufttrocken feucht	100	8	3		8		6	9		ï		550÷650	1,82 - 1,54
Wasser		4.		100	4.1	100	100	141	27	21		1000	1.0
Wasserkalk, gepulve	rt			en i		T &			**	*		550	1,82
Wasserkalk, gepulve Zement			3			9	1		10	1		1500	0,67
Ziegelsteine, gewöhn	lich	e		0.0	e.	14		120	45	į.	120	1375÷1500	$0.73 \div 0.67$
Klinker				ero.		10		-	w			1600-1800	$0.62 \div 0.55$
Zuckerrüben	66		8				8	9	116	3		800	1,25

Gewichte von zweiachsigen Kippwagen

Zahlentafel 45

	Spur mm	Inhalt m³	Leergev ohne Bremse	
Eiserne Muldenkipper	600 600 600 600 600 750 750 750	0,5 0,75 1,0 1,25 1,5 0,75 1,0 1,25 1,5	275 390 635 700 800 400 675 720 850	490 740 810 930 490 770 830 980
Holzkastenkipper	600 600 750 750 900 900 900 900	1,0 1,25 1,5 2,0 2,5 3,0 3,5 4,0	630 730 950 1250 1430 1750 1900 2400	730 830 1100 1450 1630 1980 2130 2650

Wärmemaße

Temperaturgrade Réaumur = Celsius = Fahrenheit

Zahlentafel 46

R	C	F	R	C	F	R	C	F	R	C	F
			. 10	+ 50	+122	+140	+ 175	+347	+640	+800	+1470
	-20	- 4	+ 40 44	$+50 \\ 55$	131	144	180	356	680	850	1560
-12	-15	+ 5	48	60	140	148	185	365	720	900	1650
- 8	- 10	+14	52	65	149	152	190	374	760	950	1740
- 4	- 5	+23	56	70	158	156	195	383	800	1000	1830
$\begin{array}{cccc} \pm & 0 \\ + & 0.8 \end{array}$	± 0	+32	60	25	167	160	200	392	840	1050	1920
	+ 1	+33.8	64	80	176	168	210	410	880	1100	2010
1,6	2	35,6	68	85	185	176	220	428	920	1150	2100
2,4	3	37,4	72	90		184	230	446	960	1200	2190
3,2	4	39,2	76	95		192	240	464	1000	1250	2280
4,0	5	41.0	80	100			250	482	1040	1300	2370
4.8	6	42,8	84	105		208	260	500	1080	1350	2460
5,6	7	44,6		110				518	1120	1400	2550
6,4	8	46,4		115			280	536	1160	1450	264
7.2	9	48.2		120				554	1200	1500	273
8,0	10	50,0		125					1240	1550	282
9,6	12	53,6 57,2		130					1280	1600	291
11.2	14								1320	1650	300
12,8	16									1700	309
14,4			116						1400	1750	318
16	20		120						1440	1800	327
20	25		124							1850	
24	30		128							1900	
28	35		132							1950	
32 36	40		136							2000	363

Glühfarben des Eisens

		-	Celsius ° C	Réaumur ° R	Fahrenheit ° F			
Im Dunkeln rotglühend Dunkelrot . Dunkelkirsehrot . Kirsehrot . Hellkirschrot . Dunkelorange . Helles Glühen . Hellorange . Weißglühend . Starkes Weißglühen . Schweißhitze . Blendendweiß .	* *** *** ***		500 700 800 900 1000 1100 1150 1200 1300 1350 1400÷1500	400 560 640 720 800 880 920 960 1040 1080 1120-;-1200 über 1200	930 1290 1470 1650 1830 2010 2190 2370 2460 2550÷2730 über 2730			

Hauptabmessungen von Personenwagen

Lfd. Nr.		Gattung	Achszabl		lätze ¹) lasse 3.	Länge über Puffer nun	Achsstand ²)	Eigen-	Flatz-	Bauart
1 2 3 4 5 6 7 8 9	Regelspurige Abteilwagen	Deutsch B BC C B 3 BC 3 C 3 B 4 BC 4 C 4 BC 3	e E 2 2 3 3 3 4 4 4 4 3	38 — 38 — 13 — 32 — 13 — 47 — 26 — — 13		13 920 13 920 13 920 13 080 13 460 12 640 19 200 18 620 19 200 13 730	8,5 8,5 8,5 7,5 7,5 12,25+2,15 12,25+2,5 12,25+2,15 8,9	20,9 20,2 20,0 21,3 19,3 37,5 35,6 36,5 21,6	550 405 345 625 463 385 795 615 480 503	Einheits-Bauart
11 12 13	2	BL BCL	3 2 2	- 34 - 12	60	14 500 14 335 8 905	6,0 5,0	21,6 21,4 13,4 8,3	358 358 395 295	badisch bayrisch für Lokal-
14 15 16 17	Durchgangswagen	B i BC i C i	2 2 2 2	- 38 - 15 	32 34 58	8 905 14 0 4 0 13 9 2 0 13 9 2 0	5,0 8,5 8,5 8,5 8,5	8,3 20.5 20.7 20.7	260 540 422 355	bahnen Einheits- Bauart
18 19 20 21		BC i C i BC 3i C 3i	2 3 3	15 16 	30 56 26 48	12955 12955 12800 11990	6,2 6,2 7,5 7,0	14,8 14,4 19,5 18,4	330 258 445 383	Elnheitsbauart f. Nebenbahnen preußisch
22 23 24 25	Regelspurige	B 3i BC 3i C 3i Ci + Ci	3 3 4	30 20 	32 66 104	13 650 13 960 13 650 26 600	9,25 9,25 9,25 20.5	20,2 20,4 19,5 4'18	673 392 295 402	bayrisch wil rt. Vororth.
26 27 28	Reg	B 4i BC 4i C 4i	4 4 4	- 62 - 23	51 84	21700 20960 20960	14,04+3,0 13,3+3,0 13,3+3,0	37.3 36.6 34.8	600 495 415	Einheitsbauart für Eilzüge
29 30 31	-Wagen	AB 6ü ABC 6ü C 6ü	6 6	8 30 4 18	24 64	19950 19460 19390	13,5 +3,6 13,0 +3,6 13,0 +3,6	47.7 47.5	1272 1037 742	preußisch
32 33 34 35	P. D.Zug-W	BC 4ü C 4ü AB 4ü C 4ü	4 4 4	8 36	40 64 — 80	19770 19175 21720 21720	14,4 +3,6	44,1 40,5 48,0 47,1	761 \ 632 \ \ 1090 \ 588	bayrisch Einheitsbauart 1928
36 37 38	Regelsp.	B 4ü BC 4üp C 4üp	4 - 4 -	- 46 - 24 	41 79	20 835 21 550 20 860		43,0	1008 474 450	Einheitsbauart mit Mittelgang

Lfd. Nr.		Gatt	ung	Achszahl	Sitzpla Kla 1. 2.		Länge über Puffer mm	Achsstand ²)	Eigen-	F Platz-	Bauart
	a	Dei	tsch	a R	undesb	ahn		N.			
39 40 41	-Zug-Wagen	A B A B C	4ii	4 4 4	8 30 4 12	40 72	21825 21250 21270	14,66 + 3,0 $14,25 + 3,0$ $14,27 + 3.0$	43,2 42,3 42,3	1138 920 588	Einheitsbauart
42 43	D-Zı	AB C	4 ü 4 ü	4	12 48	88	26 200 26 200	18,3 + 2,5 $18,3 + 2,5$	33,0 33,0	550 375	Finheitsbauart
44 45	egelspur.		4 üp 4 üp			76+22 132+36	26 200 26 200	18.3 + 2.5 $18.3 + 2.5$	33,0 33,0	215 198	Doppel- Stockwagen
46 47	egels	WL WL		4	22 ———	36	23500 21500	16.18 + 3.6 $14.0 + 2.15$		2550 1385	Schlafwagen
48	~	WR		4	4	2	23 500	16,18 + 3,6	51,0	1215	Spelsewagen
49 50 51	purige	BC C C	4 i 4 i 4 i	4 4 4	8	32 40 48	11400 11200 10970	6.0 + 1.4 6.0 + 1.4 6.04 + 1.1	12,6 12,7 9,9	315 320 205	} 1000-mm-Spur
52 53 54 55	Schnalspurige	BC C B BC C C	4 4 4 i	4 4 2	- 35 - 11 	30 34 48	14 460 13 710 13 360 10 930	9.0 + 1.3 8.1 + 1.3 8.1 + 1.3 7.18	15,5 11,4 10,1 8,7	280 230 180	750-mm-Spur
				Sc	hweize	rische	Bundesb	ahn, vollspur	ge D-	Zug-I	Leichtstahlwagen
56 57 58		AB B BC	4 ü 4 ü	4 4 4	12 30 - 48 - 24	_ 31	22 700 22 700 22 700	16,4 +2,7 16,47+2,7 16,47+2,7	29,0 29,0 28,0	690 605 510	
59 60		WR	4 ü 4 ü	4	3	72 3	22700 22700	17.0 + 2.7 $16.5 + 2.7$	28,0 33,0	390 1000	Speisewagen
					hätisch rünig-B	e Bahn sahn	} mete	rspurige Leic	htbau	-D-Zu	ıg-Wagen
61 62			4 ü	4	15 21	68	17 630 17 630	12,83+2,0 12,83+2,0	16,0 15,0	220	
63 64 65		WR		4 4	11 23	68	16440 16470 16470	11,2 +1,7 11,8 +1,8 11,8 +1,8	27,0 13,5 13.0	750 397 193	} Leichtmetall

¹⁾ Zwei Zahlen bedeuten: Feste Sitze + Klappsitze.

 $^{^2)\ {\}rm Bei\ Drehgestellwagen:\ Drehzapfenabstand\ +\ Drehgestellachsstand}$

Hauptabmessungen von Post-, Gepäck- und Gitterwagen der Deutschen Bundesbalm Regelspur für lfd. Nr. 1—67 Zahlentafel 49 Regelspur für lfd, Nr. 1-67

Lfd. Nr.	Gattung	Achszahl	Bauart	- Ladegewicht	с Tragfähigkt.	E Ladelänge	J Ladefläche	Hauminhalt	3 Länge über 3 Puffer ²)	Λchs - $\mathrm{stand}^1)^2)$ m	← Eigengew. ²)	m Ladungs.	Bem. ³)
1 2 3 4	Pw 3 Pw 4 Pw i Pw 4ü	3 4 2 4	Gepäckwagen 	6 10 7 10			18,5 32 23,5 42,6		12 900 18 590 13 920 21 720	7,5 12+2,5 8,5 14,55+3,0	16,6 31,7 20,0 33,0	2770 3170 2860 3300	preußisch Einheits- Bauart
5 6 7 8 9 10 11 12 13 14 15	Pw Post i Pw Post i Pw Post 4ü Post Post 4 Post 4 Post 4ü Post 4ü Pwg Pwgs	2 2 4 4 4 2 2 4	Gepück- u. Postwagen ". Postwagen ". Güterzug-Gepückwag. Heizkesselwagen	5,7 6 10,5 6 11 20 20 19 4 5	6,3 13 21 21 21 20			27 30 61 58,5	$10900\\12400$	14,4+3,6 4,7 6,0	18,1 14,4	2205 2580 3485 3020 1310 2145 2050 2090 2780 2520	preußisch Einheits- Bauart Briefpost Paketpost Paketpost Briefpost preußich
16 17	G Gr	2	Gedeckter Wagen	15 15	17,5 17,5	7,92	21,3 21,2	_	9300 9600 9100	4,5 4,5	13,9 14,4 14,5	925 960 965	[A2]
18 19	Gl Gbh	2	,,	15 15	17.5 17.5	10,72	28,8	_	$9800 \\ 12100 \\ 12800 \\ 12800$	7,0	14,9 15,0 15,4 15,8	$ \begin{array}{r} 995 \\ \hline 1000 \\ \hline 1025 \\ 1055 \end{array} $	[A9] Fährbootwagen
20 21	Gmhs GGhs	2 4		20 15	21 15,75	8,62 15,52	23,5 41,6	_	$\frac{10000}{10100}$	7,0 11,0 + 2,6	15,1 15,2 22,7	755 760 1530	r dia boli wageii

22	GGths	4	Gedeckter Wagen	51	53	16,48	44,5	-	18000	12,0 + 2,0	22,9	450	
23	Gll	4	17	30	31,5	19,34	53,0	-	24 140	19,5	29,2	975	Leig-Einheit
24	Vh	2	Verschlag-(Vieh-)wag.	15	10.5	0.0	10.5		8250	4.0	14,4	960	1403
24	VII	2	versemag-(vien-/wag.	15	17,5	6,9	18,5	_	8 550	4,0	14,8	985	[A8]
25	V	.,					24.0		9 100		15,0	1000	
25	Y	2	**	15	17,5	7,75	21,3	-	9800	4,5	15,4	1025	
26	Ths	2	Universal-Kühlwagen	115	15,75	9.78	21,5	39	11700	7.0	14.2	945	1
27	TThs	4	(149)	36	38	11,75	30,6	51,0	16700	10,0+2,0	24,5	680	
28	Thyhs	2	Fleischkühlwagen	15	15,75	9,12	24,0	47	11700	7,0	14,9	995	
29	Tnfhs	2	Seefischkühlwagen	15	15,75	10,08	28,5	58,5	11700	7,0	12,7	845	
30	Tnobs	2	Rierkühlwagen	1.6	16,8	9,05	23,8	58	11700	7.0	15,0	940	
31	К	٠,	Klappdeckel-(Kalk-)	15	17.5	= 00=	140		6600	3,0	9,5	635	f 4 = 1
31	K	2	wagen	119	17,5	5,295	14,9	_	7300	3,3	10,3	685	[A7]
)			ıı					8100		11,0	735	
32	K	2	**	15	17,5	6,79	19,0	_	8800	4,0	11.6	775	
. 4				ıı					9 100		10.7	535	
33	Km	2	,,	20	21	7,79	21,7	_		6.0			
9	**			l I					9800		11,2	560	
34	Kmm	2		24	25	8,69	24,3	_	10000	5,1	10,8	450	
35	KKt	4	,,	54.5	56,4	10,7	_	78	12700	8,1	23,6	435	für Getreide
36	KKt	4	**	55,5	58.3	10,3	_	91	12000	7,9	21,7	390	für Koks
37	KKt	4	,,	55	56,5	10,7		90		$6,85 \pm 1,8$	23,5	425	1
38	0	2	Offener Güterwagen	15	17.5	5,3	14,9		6 600	3,5	8,7	580	[A6]
00	· ·	-	Offener Witter wagen	10	11,0	0,0	14,3		7 300	0,0	9,2	615	[A0]
	_					0 = 1			8100		8,8	585	
39	•	2	**	15	17,5	6,72	18,4	_	8 800	4,0	9,5	635	[A 1]
				ΙI					9100		10.4	520	
40	Om	2	3+	20	21	7,72	21,3	\rightarrow	_	4,5			[A10]
	Oml			ا ء٥ ا		10.0	20.5		9800	0.5	11,0	550	
41	OIII	2	,,	20	21	10,0	26,5	_	11380	6,5	10,2	510	
42	Omm	2	,,	24,5	25.5	8,72	23,9	_	10 100	6,0	10,4	425	
					,,	-,			10800	5,0	10,7	435	
43	Ommu	2		24.5	25.5	8,72	23.9		10 100	6.0	10,5	430	
40	Ommu	2	"	44,3	20,0	0,72	20.9		10 600	0,0	10,8	440	

 $[\]overline{\ \ }$ Bei Drehgestellwagen: Drehzapfenabstand + Drehgestellachsstand.

 ²⁾ Sind zwei Werte angegeben, so bezieht sich der erste auf den Wagen ohne, der zweite mit Handbrenise.
 3) In [...]: Musterblattnummer des Deutschen Staatsbahnwagenverbands. Wagen ohne diese oder die Angabe "preußisch" usw. sind Einheitsbauarten. 4) Ladungsgewicht = Eigengewicht: Ladegewicht.

Lfd. Nr.	Gattung	Achszabl	Bauart	- Ladegewicht	ு Tragfähigkt.	E Ladelänge	E Ladefläche	g Rauminhalt	E Länge über E Puffer 2)	Achs- stand ¹) ²)	← Eigengew. 2)	m Ladungs.	Bem. ³)
40	Ommu	2	Offencr Güterwagen	26,5	27,5	8,62	23,6	-	10000 10100	6,0	8,8 9,35	333	
41	Ot	2	Offener Selbstentlader	16	16,8	-	-	-	8 0 0 0 8 2 0 0	4,5	10,4	650	preußisch
42	Otm	2	U	20	21	_		-	7 600	4,5	10,7 12,5	535 625	preußisch
43	Otmm OOt	2		26 38	27 39			_	8 2 0 0 1 3 8 2 2	4,5 9,0+1,8	13,0 19,4	500 485	bayrisch
45	OUt	4		59	60.8			75	10000	6,6	19,2		für Kohle
46	OOt	4	"	55,5	57,6		_	90	12000	6,6+2.05	22,4	405	für Koks
47	OOtz	4	1	55	57	_	_	33	10000	6,6	23,0	418	für Erz
48	Ok	2	Offener Kübelwagen	26	27	_	_	36	7 600	4,0	13,0	500	für Kohle
49	Ok	2		26	27		_	48	7 600	4,0	13,1	505	für Koks
50	н	2	Schemelwagen	15	17.5	8,0	20,0	_	$\frac{9300}{10030}$	4,5	9,4 10,2	625	[A5]
51	R	2	Rungenwagen	15	17,5	10,12	27,0	_	$\frac{11500}{12200}$	6,0	9,7 10,5	645 700	[A4]
52	Rms	2	,,	20	21	10,66	28,5	_	12100 12800	8,0	12,3 $13,0$	615	
53	Rmms	2	.,	24,5	25,5	10,58	28,4		12000 12100	8,0	10,3 10,5	420	
54	Rbh	2	11	15	17.5	10,72	22,5	_	12800	7,0	11,5	765	Fährbootwagen
55	S	2	Schienenwagen	15	17,5	13,0	35,7	_	14400	8,0	10,6	705	[A 11]
56	Sm	2	**	20	21	12,98	36,4	_	14000	8,0	11,0	550	
57	SS	4	.,	35	36,75	15,06	41,4		17100	10,0 + 2,0	19,5	558	[A3]

_		_											
58	SSI	4	Schienenwagen	40	40.5	18.08	49,7	_	20100	12.8 + 2.0	23.0	575	
59	SSys	4	,,	50	52	8.8	27.7	_	10800		16,2		
60	SSyl	4	1 1	50	52	12,3	34.8	_	14 200	9.3 + 1.8	20.0		
61	SSyms	6		80	82	11,2	35,3	_	13200	7.2+3.0	22,3		
62	SSos	4	i i	55	58	17.95	47.0	_	19500	12.8+2.0			
63	SSt	4	Tiefladewagen	38	38.1	13.8	41,4		15110	10,6+1,8			,
64	SSt	8	"	105	110	12,0	-1,4		27724	10.0 ± 1.8 19.0 ± 4.5	47.5		badisch
65	SSt	10	i i	135	140	10.0		_	28738				
66		2	Kesselwagen	21	22.4	10,0		20	8800	18,5+6,0			
67	demons	4		46	47.35	_		48	12400	4,5	9,6		
		1	"	140	41,00		_	40	12400	6,6+2,0	16,65	360	
					1	1	.000 n	am S	pur				
68	Pw Post 4	4	Gepäck- u. Postwagen		_	_	-	-	11400	6,0+1,4	12.5	2080	preußisch
69	Pw Post L	2		5	_	-	-	_	8180	4.4	6.0	1200	bayrisch
70	Pw Post	2		4		_	-	_	8430	5,0	6,75	1685	württ.
71	Gw L	2	Gedeckter Güterwag.	5	5.25	5.35	13,1	-	6580	2,7	4.4	880	bayrisch
72	Gw L	2	.,	7.5	7.87	5.34	12,0		6650	2,7	4.4	585	bayrisch
73	G	3	,,	15	15.75	7,43	18,6	_	8430	5.0	7.65		wiirtt.
74	GGw	4		15	15,75	10.0	24,0		10900	6,5+1,4	11,1	745	preußisch
75	OwL	2	Offener Güterwagen	7.5	7.87	5,33	11,9	_	6200	2,7	3.7	495	bayrisch
76	0	2	,,	10	10.5	6.0	14,4	_	7 200	3,2	4.9	490	preußisch
77	0	2	,,	15	15,75	6.4	15,0	_	7100	3,5	5,6	375	preußisch
78	0	3	,,	15	15,75	7.43	18,8	_	8430	5,0	5,6	375	wiirtt.
79	OOm	4		20	21	10,0	23,3		10 670	6.4 + 1.3	9.1	455	preußisch
80	Ot	3	Offener Selbstentlader	15	15.75	_			6350	2,75	8,5	565	preußisch
81	Hwl	2	Schemelwagen	7.5	7.87	4.0	9,2	_	4 800	1.8	2,6	345	
82	H	3		15	15,75	7.5	14.9	_	8420	5.0	5,9	395	bayrisch
83	RR	4	Rungenwagen	20	21	10.0	23,0	_	10840	6,4+1,2	8.5	425	württ.
84	SSkw	4	Schienenwagen	20	21	10.0	25,0	_					preußisch
85	_	2	Rollbock	15	15.75	10,0	20,0		10840	6,4+1,2	8,6	430	preußisch
86	_	4	Rollwagen	32	32	(6.5)	_		_	1,2	1.5	100	württ.
\neg i		1	Tron was on	02	02	_		=		4,5 + 1,1	6,0	400	bayrisch
87	Pw Post		G ".l D			3	50 m	m SI					
88	G Post	2	Gepäck-u,Postwagen	6,5		- 1	-		8 4 3 0	5,0	6,5	1000	wiirtt.
89	0	3	Gedeckter Güterwag,	10	10,5	7.43	18,7	_	8 420	5,0	6,6	660	württ.
90	H	3	Offener Güterwagen	15	15,75	7,43	18,7	-	8 420	5,0	5,6	375	wiirtt.
91	п	3		15	15,75	7.5	17.8	-	8 430	5,0	7,3	485	württ.
_	- aton slobe S	2		15	15,75		-	_	_	1,1	1.5	100	wiirtt.

Kennwerte von Eisenbahnzügen

				Triebfa	hrzeu	g		Wagenzu	gobne	Loko	moti	ve
Lfd. Nr.	Dotate	Detrieogart	Zugart 1)	Bauart und Gattung	Dienst-	Reibungs-	d Leistung	Achszahl ²)	Zabl der Sitzplätze	Rutz- gewicht 3)	- Leergewicht	Gew. des be- setzten Zuges
1 2 ⁸) 3 ⁹) 4 ¹⁰) 5 6 ¹¹) 7 ¹¹) ¹²) 8 9 10 11 12 13 ¹³)	ptivzug	Dampf	FS :: S :: E :: PVNG ::	2C1h2 03 2C3h3 61 ⁹⁰² 2D2h2 J 2Ch4 230 K 2C1h3 01 ¹⁰ 2C1h3 01 ¹⁰ 2Ch4 810 ¹ 2Ch2 P8 1Ch2 P8 1Ch2 P8 1Ch2 T12 1C1h2 64 1Eh2 52 Kon	175 146 395 161 196 196 73 148 130 67 75 155 185	53 56 115 58 60 60 38 53 51,5 50 45,5 79 95	1520	$\begin{array}{c} 6\times 4 = 24 \\ 4\times 4 = 16 \\ 10\times 4 = 40 \\ 6\times 10 = 60 \\ 13\times 4 = 52 \\ 12\times 4 = 48 \\ 2\times 3 = 6 \\ 7\times 4 = 28 \\ 10\times 3 = 30 \\ 9\times 3 = 27 \\ 7\times 2 = 14 \\ 2\times 75 = 150 \\ 20\times 4 + 2 = 82 \end{array}$		22 20 39 22 72 105 23 38 38 25 24 650 1200	248 124 551 102 505 395 71 230 190 163 106 750 400	270 144 590 123 577 500 94 268 228 188 130 1400
14 15 ¹⁴) 16 ¹⁵) ¹⁶) 17 18 19 20	Lokom	elektrisch	FS S E P G	$\begin{array}{cccc} 1 & E \ 04 \\ B_0 B_0 & Re^4 /_4 \\ B_0 (2/b_0) B_0 Feh^4 /_6 \\ 1 D_0 1 & E \ 19 \\ 1 C_0 1 & E \ 04 \\ B_0 B_0 & E \ 44 \\ C_0 C_0 & E \ 94 \\ \end{array}$	113 92 78	57 40 { 81	2700 2350 1215 1950 5050 2700 2500 4050	$\begin{array}{c} 6\times\ 4=24\\ 8\times\ 4=32\\ 10\times\ 4=40\\ 3\times\ 4=12\\ 13\times\ 4=52\\ 7\times\ 4=28\\ 10\times\ 3=30\\ 2\times 75=150 \end{array}$	196 470 612 170 700 380 432	22 30 29 8,5 72 38 38 650	248 220 131 39,5 505 230 190 750	270 250 160 48 577 268 228 1400
21 ¹⁷) 22	-1	Diesel	FS N	$C_0C_0 + C_0C_0$ Diesel- elektr. C Diesel- V 36 hydraul.	290 42	290 42	4500 360	$6 \times 4 = 24$ $3 \times 4 = 12$	382 213	28 15	302 60	330 75
2312)	z n g	Dampf	Е	Triebwg. u. Steuerwg	90	50	300	2 × 4 = 8	143	12	28	40
24 25 ¹⁸) ¹⁹) 26 ¹⁹)	wagenz	elektrisch Dampf	E V N	Triebwg. u. Steuerwg sechsteil. Ganzzug Speicher-Doppelwg.		45 193 25	975 2400 200	$3 \times 4 = 12$ $6 \times 4 = 24$ $2 \times 3 = 6$	229 404 ²¹) 88	18 80 11	120 262 70	138 342 81
27 28 29	Triebw	Diesel	FS E N	dreiteil. Schnell- triebwagen Iriebwg. u.Steuerwg Schienenomnibus		56 32 5,5	1200 420 110	$4 \times 4 = 16$ $2 \times 4 = 8$ 2	132 132 53	12 12 4	168 63 11	180 75 15

Vollst	andlge	Zug (L	okomo	tive + W	agen)	
Gesamt- Gewicht Drutto	m Größte W Geschwin- u digkeit	Spezifisches Tuggewicht*)	Leistung of je Gewichts- einheit 5)	Leistung je Beförde- rungseinheit ⁶)	Zuglecr- gewicht je Sitzplatz 7)	Fußnoten
445 290 985 284 773 696 167 416 358 255 205 1555 1785 362 307 214 102 690 360 306	130 175 130 120 120 120 120 120 90 80 60 60 60 125 75 33 120 130 130 190	8,4 5,18 8,55 4,9 12,9 11,6 4,4 7,85 6,95 5,1 4,5 19,7 18,8 5,89 5,35 2,55 8,52 5,85 2,55 8,92	4,45 5,0 5,48 5,8 2,75 3,05 4,5 3,6 3,41 4,63 0,98 1,06 7,45 7,65 5,68 19,2 7,32 7,5 8,18	10,1 6,62 10,2 5,48 3,03 1,57 2,5 3,95 2,73 2,26 3,02 2,34 1,58 13,8 5,0 1,99 11,45 7,21 7,1 5,78	1,265 0,566 1,06 0,339 0,721 0,605 0,44 0,425 0,336 1,155 0,333 1,265 0,468 0,214 0,232 0,721 0,605	1) FS = Fernschnellzug S = Schnellzug E = Eilzug P = Personenzug V = Vorortzug N = Nebenbahnzug G = Güterzug. 2) Einschl. Triebwagen., Gepäck., Speise und Schlafwagenachsen. 3) Bei Personenz.: Personengew. + Gepäck und Schlafwagenachsen. 4) spez. Zuggewicht = Gesamtgew. (brutto Reibungsgewicht 5) Leistung ie Gewichtseinheit = Leistung Gesantgewicht (brutto) 6) Leistung ie Beförderungseinheit = Leistung Zahl der Sitzplätze; bei Ifd. Nr. 12, 13 und 20: Leistung 7) Bei Ifd. Nr. 12, 13 und 20: Leistung
1519	60	12,8	2,66	6,23	1,15	je t Nutzgewicht. 8) Henschel-Wegmann-Stromlinienzug.
620 117	180 60	2,14 2,79	11,8 3,08	5,9 1,69	0,786 0,282	 "Powhatan arrow" der Norfolk- un Westbahn (USA) Gummibereifter Zug, Bauart Michelin (Frankreich) Mit Doppelstockwagen.
130	110	2,6	2,3	2,1	0,196	 Ehemals Lübeck-Büchener Eisenbahn Großgüterwagenzug.
138 342 81	120 80 60	3,07 1,77 3,24	7,06 7,02 2,47	4,25 5,95 2,27	0,524 0,649 0,795	 14) Leichtstahlzug (Schweiz). 15) Leichtmetallzug der meterspurigen Brünigbahn (Schweiz). 16) Obere Zahlen: Reibungsstrecke,
180 75 15	160 100 60	3,22 2,34 2,73	6,66 5,6 7,33	9,1 3,18 2,08	1,272 0,477 0,208	untere Zahlen: Zahnradstrecke († :8,4' ¹⁷) "Bue bird"der Wabash-Eisenb. (USA ¹⁸) Hamburger Stadtbahn. ¹⁹) Gleichstrom. ²⁰) Zuzüglich 296 Stehplätze. ²¹) Zuzüglich 656 Stehplätze.

Werkstoff-Beanspruchungen

nach "Hitte", Des Ingenieurs Taschenbuch, 27. Auflage, I. Band. Seite 771, Berlin 1949, Verlag von Wilhelm Ernst & Sohn.

Zulässige Nennspannungen für Werkstoffe des Maschinenbaues

^σF = Spannung an der Fließ- oder Streckgrenze

σB = Zugfestigkeit bei ruhender Last

⁶ b B = Biegungsfestigkeit bei ruhender Last

 $^{\rm G}\,b\,W\!=\!$ Wechsel- bzw. Schwingfestigkeit gegenüber Biegungsbeanspruchung

t W = Wechsel- bzw. Schwingfestigkeit gegenüber Torsionsbeanspruchung

Zahlentafel 51

Werk	stoffe		3t .11		St 0.11		tg .81		је .91		łe .91		lu- in ⁵)	Dur mi	
Festig-	σ_{F}	2	0	2	8	2	2	-		-	_	8	3	2	2
keits- werte	σ_B	3	7	5	0	4	5	1	14	2	6	17	7	3	4
(Min-	σ_{bB}	-	_ ;	-		-	- 1	2	28 ¹)	4	61)	-	-	-	_
dest- werte)	obw	1	42)	1	9^{2})	1	62)		62)	1	02)	4,	5 ²)	1	0 ²)
kg/mm ²	t t W		8 ²)	1	1 ²)		9 ²)		5 ²)		8 ²)	2,	7 ²)	6	,5 ²)
		von	bis	von	bis	von	bis	von	bis	von	bis	von	bis	von	bis
Zug	I	10,0	15,0	14,0	21,0	10,0	15,0	3,5	4,5	6,5	8,5	3,0	5,0	11,0	16,
σ _z zul	II	6,5	9,5	9,0	13,5	6,5	9,5	2,7	3.7	5,0	6,7	1,6	2,8	5,0	7.
σ _z zul	III	4,5	7,0	6,5	9,5	4,5	7,0	2,0	3.0	3,5	5,0	1,3	2,0	3,5	5,
Druck	I	10,0	15,0	14,0	21,0	11,0	16,5	8,5	11,5	16,0	21,5	4,0	6,0	11,0	16,
σ σ _{zul}	II	6,5	9,5	9,0	13,5	7,0	10,5	5,5	7.5	10,0	13,5	2,0	2,4	5,0	7.
Biegg. $\sigma_{b_{\mathrm{zul}}}$	III	4,5	7,0	6.5	9,5	4,5	7,0	2,0	3,0	3,5	5,0	1,3	2,0	3,5	5.
Biegg.	I	11,0	16,5	15,0	22,0	11,0	16,5	5,0	7.0^{3}	10,0	13,5 ³)	3,5	5,0	12,0	17,
$\sigma_{b_{\mathrm{zul}}}$	II	7,0	10,5	10,0	15,0	7,0	10,5	3,5	5,0 ³)	6,5	9,03)	2,0	2,8	5,0	7,
20 Zui	III	5,0	7,5	7,0	10,5	5,0	7,5	2,5	3,53)	4,0	6.0^3)	1,4	2,1	3,5	5,
₹Verdrg.	I	6,5	9,5	8,5	12,5	6,5	9,5	4,0	5,54)	7,5	10,04)	2,5	3,5	6,5	9,
$^{ au_{t_{ m zul}}}$	II	4,0	6,0	5,5	8,5	4,0			4.04)		7,54)		2,8	3,2	4,
zui	III	3,0	4,5	4.0	6,0	3,0	4,5	2,0	3.04)	3,5	5,04)	0.8	1,5	2,2	3.

¹⁾ Die Werte der Biegefestigkeit bei Gußeisen gelten für die normale Biegeprobe am unbearbeiteten Rundstab von 30 mm Dmr. — 2) Von den im Schwingungsversuch an kleinen Probestäben ermittelten Werten sind zur Berücksichtigung des Größen- und des Oberflächeneinflusses etwa 25 % in Abzug gebracht. — 3) Die Werte gelten bei Gußeisen für die Rechteckquerschnitte.

Im Maschinenbau hat sich durch C. Bach der Gebrauch eingebürgert, die zulässigen Beanspruchungen für die Belastungsfälle I, II und III der ruhenden, schwellenden und schwingenden Beanspruchung festzulegen.

Belastungsfall I: Ruhende Last

- II: Wechselnde Last derart, daß die Spannungen abwechselnd von Null bis zu einem größten Wert stetig wachsen und dann wieder auf Null herabsinken.
- III: Wechselnde Last derart, daß die Spannungen abwechselnd von einem größten negativen Wert stetig wachsen bis zu einem größten, absolut gleich großen positiven Wert, und dann wieder abnehmen. Wechsel der Beanspruchung auch durch Änderung der Temperatur.

Dabei erscheint bei ruhender Last eine 1,3- bis 2,0 fache Sicherheit gegen Erreichung der Streckgrenze am Platze, wobei die Streckgrenze höchstens mit dem •,7 fachen Wert der Zugfestigkeit eingesetzt werden sollte. Bei spröden Werkstoffen empfiehlt es sich, eine 3- bis 4 fache Sicherheit gegen das Eintreten eines Gewaltbruchs zu wählen. Bel schwingender Beanspruchung kann man sich mit einer verhältnismäßig geringen Sicherheit begnügen, wenn die bei Kerbwirkung auftretenden Spannungsspitzen in der Festigkeitsrechnung voll eingesetzt werden oder wenn die zul. Beanspruchung unter Berücksichtigung der wirklich vorhandenen Kerbwirkungsziffer festgelegt wird. In den nicht durch Kerbwirkung beeinflußten Teilen muß eine 2- bis 3 fache Sicherheit gegen Erreichung der Schwingungsfestigkeit gefordert werden, wobei der Abfall, den die Schwingungsfestigkeit beim Vorliegen größerer Querschnitte erleidet, gebührend zu berücksichtigen ist.

Wie Versuche von Bach gezeigt haben, können für den kreisförmigen Querschnitt um 20 % höhere, für den \mathbb{L} -Querschnitt aber um 20 % niedrigere Werte eingesetzt werden. — 4) Die Werte gelten bei bearbeitetem Gußeisen für den kreisförmigen Querschnitt. Nach Versuchen von Bach sind sie bei anders geformten Querschnitten wie folgt zu erhöhen bzw. zu erniedrigen: bei kreisförmigem Querschnitt um 0 bis — 20 %, bei elliptischem Querschnitt um 0 bis + 25 %, bei quadratischem Querschnitt um + 40 %, bei rechteckigem Querschnitt um + 40 bis 60 %. — 5) Guß. — 5) Außephärtet.

Die oberen Werte nebenstehender Tabelle sollten nur dann Verwendung finden, wenn es sich um einfache glatte Maschinenteile mit sauber bearbeiteter Oberfläche und gut gerundeten Übergängen handelt, bel welchen Kerbwirkungen weitgehend vermieden sind. In allen den Fällen, in welchen die Beanspruchungsverhältnisse durch die Festigkeitsrechnung nicht genau festgelegt sind, sind die unteren Grenzwerte zu benutzen. Bei den gegossenen Werkstoffen sind die hiufig vorliegenden Schwankungen in den Festigkeitseigenschaften gegebenenfalls besonders zu berücksichtigen. Bei Gußeisen wirkt sich die geringe Empfindlichkeit gegen äußere Kerbwirkungen günstig aus. Korrosionswirkungen und hohe Vorspannungen (z. B. bei Schrauben) können die zulässigen Beanspruchungen weitgehend herabsetzen.

Passungen und Toleranzen

werden im deutschen Lokomotivbau seit 1937 nach dem System der Einheitsbohrung im ISA-System (International Federation of the National Standardizing Associations) festgelegt. Das ISA-Passungssystem wurde von allen den Ländern übernommen, die nach dem metrischen Maßsystem arbeiten. Die Länder des Zollblocks (England, Britisches Commonwealth, USA, Kanada) |haben zum größten Teil eigene, auf dem Zollsystem beruhende Toleranzsysteme.

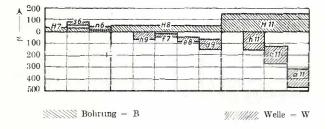


Bild 221. Passungsauswahl — Einheitsbohrung Nach DIN 5601

Das metrische Schraubengewinde herrscht in den Ländern vor, die nach dem metrischen Maßsystem arbeiten, das Whitworth-Gewinde in den Ländern des Zollblocks. Die ISO (International Standardizing Organisation) hat eine Vereinheitlichung der verschiedenen metrischen Ländergewinde in Angriff genommen. Das amerikanische und das englische Gewinde wurden 1948 in Ottawa von den USA, England und Kanada im "Unified Screw Thread" zusammengefaßt.

Passungsauswahl — Einheitsbohrung

iı	System	der	ISA-	Passi	ungen	nach	DIN	5601	l. N	ennab	maße	in	μ	=	1/100	00	mm
Г	TCA	н	1 0	6	26	He	h a	£7	0.8	4.0	и п	1 1	. 11	T.	11	_	1.

							_					_
ISA-	H 7	s 6	n 6	H 8	h 9	f 7	e 8	d 9	H 11	h ll	c l l	all
Passung	В	W	W	В	W	W	W	W	В	W	W	W
6- 10	$^{+15}_{0}$	$^{+\ 32}_{+\ 23}$	$^{+19}_{+10}$	$^{+22}_{0}$	0 - 36		- 47	- 76	$+^{90}_{0}$	0 - 90		- 280 - 370
10~ 18	$^{+18}_{0}$	$^{+}_{+}$ $^{39}_{28}$	$^{+23}_{+12}$	$^{+27}_{0}$	0 - 43	- 16 - 34	- 59		+110 0	0 -110	- 95 -205	- 290 - 400
18- 30	+21 0	+ 48 + 35	$^{+28}_{+15}$	+33 0	0 - 52	- 20 - 41		- 65 -117	$^{+130}_{0}$	0 -130	-110 -240	- 300 - 430
30- 40	+25	+ 59	+33	+39	0		- 50	- 80	+160	0	-120 -280	- 310 - 470
40- 50	0	+ 43	+17	0	- 62	- 50	- 89	-142	0	-160	-130 -290	- 320 - 480
50- 65	+30	+ 72 + 53	+39	+46	0_			-100		0	-140 -330	- 340 - 530
65- 80 5-	0	+ 78 + 59	+20	0	- 74	- 60	-106	-174	0	-190	-150 -340	- 360 - 550
80-100 m 100-120	+35	+ 93 + 71	+45	+54	0		- 72		+220	0	-170 -390	- 380 - 600
.s	0	+101 + 79	+23	0	- 87	- 71	-126	-207	0	-220	-180 -400	- 410 - 630
년 120-140 - 프	. 40	+117 + 92 + 125				40	0.5				-200 -450	- 460 - 710
है 140–160 इ	+40 0	$+125 \\ +100 \\ \hline +133$	$^{+52}_{+27}$	+63 0	0 -100	- 43 - 83	- 85 -148	-145 -245	+250	0 -250		- 520 - 770
160-180		+108									-230 -480	- 580 - 830
140–160 160–180 160–200 200–225	+46	$+151 \\ +122 \\ +159$	+60	+72	0	50	100	,,,,	1.000		-240 -530	- 660 - 950
z ——	0	$+130 \\ +169$	+31	0		- 96	-172	-170 -285	+290 0	0 -290	-260 -550 -280	- 740 -1030
225-250		$+140 \\ +190$		_							-570	- 820 -1110
250-280	+52	$+158 \\ +202$	+66 +34	+81	0 -130		-110 -191	-190 -320	+320	0	-300 -620	- 920 -1240
280-315	Ü	$+202 \\ +170 \\ +226$	L04		-100	-108	-191	-320		-320	-650	-1050 -1370
315-355	$+57 \\ 0$	+190	+73	+89	0		-125		+360	0	-360 -720	-1200 -1560
355-400	U	+244 +208	+37	0	-140	-119	-214	-350	0	-3 60	-4 00 -760	-1350 -1710
400-450	+63	$^{+272}_{+232}$	+80	+97	0		-135		+400	0	-44 0 -84 0	-1500 -1900
450-500	0	$^{+292}_{+252}$	+40	0	-155			-385	0		-4 80 - 880	-1650 -2050
DIN	7161	7160	7160	7161	7160	7160	7160	7160	7161	7160	7160	7160

Umrechnungstafeln

Metrische Maße — Zollmaße

Zahlentafel 53

1. Längen-Maße

2. Flächen-Maße

1 mm = 0.03937" (Zoll = inch) 1 m = 3.281' (Fuß = foot) 1 m = 1.094 yard 1 km = 0.621 englische Landmeile = 0.5396 englische Seemeile	1 mm ² = 0,00155 square inch 1 cm ² = 0,155 square inch 1 m ² = 10,7643 square feet = 1,196 square yards
---	--

3. Raum-Maße

1	cm ³ dm ³	5A 64	0,061023 61,024	cu. inches cu, inches = 1,7598 pints = 0,219975 Imp. gal,
		100	0.2201	engl. (Imp.) Gallonen
		-	0,2642	amerikanische Gallonen
1	1113	\rightarrow	220,1	engl. (Imp.) Gallonen
		MIS	264,2	amerikanische Galionen = 35,3148 cu. feet
				= 1.307954 cu. yard $= 0.35315$ Registertonnen
1	Registertonne	100	100	engl. Kubikfuß = 2.8316 m^3
1	Frachttonne (Schi	ffsto	onne) als Rau	ımmaß
		=	1 139 m3	= 40 engl. Kubikfuß

4. Gewichte

- 1	g		15,432	Grains = 0.0022046 lb.	
1	kg	812	2,2046	lbs. (pounds)	
1	t	\$10	0.984206	British (long) ton = 1,10231 USA (short) to	n
1	Frachttonne	(Schiffsto	nne) als Ge	$ewichtsma\beta = 1016 \text{ kg} = 1 \text{ long ton}$	
1	kg/m	(804)	0.672	pound per foot	
	$kg/cm^2 = at$		14.223	pounds per square inch	
î	kg/inm2		0.635	long tons per square inch	
î	kg/m²	478 EM	0.205	Pfund je Quadratfuß	
-			0,200	a raina to Canada and	
1	g/cm ³	200	0.03612	Pfund je Kubikzoll	
- 1					
1	kg/m ³	=	0.0624	Pfund je Kubikfuß	
1	kg/t	-	2,24	lbs, per long ton	

5. Sonstige Maße

1 mkg	100	7,233	Fußpfund
1 Tonnen-km	6.00	0.6116	engl. Tonnenmeilen
1 PS = 0.736 kW	200	0.9863	HP (engl. Pferdestärke)
1 kcal	22	3,968	B. T. U. (British Thermal Unit)
1 kcal/kg	F35.0	1.80	B. T. U. per pound
1 Knoten	(612	1	Seemeile/h = 6080 feet per hour
1 kg/PS	-	2,235	lbs. per HP.
1 Frachttonue (Sc als Gewichtsma	ß == :	1016 kg =	dlage für die Bereclmung der Secfrachten) = 1 long ton

	ais Gewichtsman	-	TOTO KR	= 1 long ton	
	als Raummaß	222	40 engl.	Kubikfuß	
1		810	196,851	feet per minute	
ī	m/sec km/h	100	0,621	miles per hour	

Zollmaße - Metrische Maße

12 1				~ 4
Zah	en'	tat	el	04

		•-	de la constante de la constant
1. Längen-Maße			
1 Zoll (inch) = 25.4 mm $1 link$	-0.10	0,66 foo	t = 201.2 mm
1 Fuß (foot) = 0.305 m 1 Yard	-	0.9144 m	
1 chain = 66 feet = 100 links = 792 inches	200	20,1168	m
1 englische Landmeile (mile) = 5280 feet	-	1.6093	km
	100		
1 englische Seemeile	100	1,85318	km
2. Flächen-Maße			
1 Quadratzoll (square inch)		645,16	nm ²
1 Quadratfuß (square foot)	910		dm ²
1 Quadratyard (square yard)	100	0,8361	m^2
9 Dann Made			
3, Raum-Маßе			
1 fl. drachm = 60 minims	246	3.55	en13
1 Kubikzoll	.=	16,387	cm ⁵
1 fl. ounze = 8 fl. drachms	-	28.41	cm ³
1 pint = 34,67 cu. inches	700	0,5682	dm5
1 Imp. barrel	812	163.6	dm ³
1 engl. Gallone (Imp. gallon) =		100,0	din-
1,2 USA gal. = 0,1605 cu. foot =			
277,4 cu. inches	**	4.54596	dm3
1 amerikanische Gallone (USA) gal.) =		1,010.00	dillo
0,83254 Imp. gal. = 231 cu. inches	000	3,785	dm ³
1 Kubikfuß	100	28,3167	dm ³
1 Imp. bushel = 8 Imp. gal. 1 cu, yard = 764,553 dm ³	7	36,368	dm ³
		0,764553	m²
1 Registertonne (= 100 cu. 1eet)	***	2,8316	m ²
4 61-1-1-4-			
4. Gewichte			
1 grain	tell	0.0648	g
1 pennyw't	200	1,5552	ĝ
1 dranı	-	1.772	g
1 ounce (oz.) = 16 drams	44	0,02835	kg
1 pound (lb.) = 16 ounces = 7000 grains	=	0,45359	kg
1 quarter (ar) = 28 pounds = 2 etones	4440	12,701	kg
1 quarter (qr.) = 28 pounds = 2 stones (in USA = 25 pounds = 11.4 kg)		12,701	N.B.
1 hundredweight (cwt.) = 4 quarters	116	50.8	kg
I handredweight (ews.) - 4 quarters			kg in USA)
1 quintal = 1,968 cwt.	-		
1 USA (net or short) ton = 2000 pounds		100	kg
- 0.0000c Dr. /long/ ton		007 105	No. or
= 0.89286 Br. (long) ton	-	907,185	kg
1 British or long ton = 2240 pounds = 20 cwt = 1,12 USA tons		010.05	,
20 cwt = 1.12 USA tons	= 1	016,05	kg
1 Pfund je Fuß	100	1,4882	kg/m
1 long ton je Quadratzoll	-	1,575	kg/mm ²
1 Pfund is Quadratzoll (lb per sq in) = 0.070	207	kg/om2 - 4	CO 071 dames and
1 Pfund je Quadratzoll (lb. per. sq. in.) = 0,070 1 Pfund je Quadratfuß (lb. per sq. ft.) 1 Pfund je Kubikzull	001	1 8896	lea/m2
1 Pfund je Kubikzoll		27.7	g/cm ³
	=	16,02	
I I I uliu je Rubiki ub	100	10,02	kg/m ³
5. Sonstige Maße			
1 Fußpfund	***	0,13826	mkg
1 englische Pferdestärke (HP) = 1,014 PS = 0,	7459	kW = 0.1	1781 kcal/sec
1 lb. per HP 1 B. T. U. (British Thermal Unit) 1 B. T. U. per pound		0.447	kg/PS
1 B. T. U. (British Thermal Unit)	200	0.252	kcal
1 B. T. U. per pound	res.		kcal/kg
1 Fus je Minute (foot per minute)	472		m/sec
1 mile per hour	==		km/h
1 knot = 6080 feet per hour	244		km/h
		1,00010	***** 11

1107	0	1/16	1/8	3/16	1/4	5/16	3/8	7/16	1/2	9/16	5/8	11/16	3/4	13/16	7/8	15/16
1					0.050	7 000	0.595	11 113	19 700	14.288	15.875	17,463	19,050	20,638	22,225 47,625	23,813
0	0,000	1,588	3,175	4,763	6,350	00,000	9,020	26 513	38 100	39 688	41.275	42,863	44,450	46,038	47.625 73,025	49,213
1	25,400	26,987	28,575	30,163	31,750	33,330	60 395	61 019	62 500	65 088	66.675	68,263	69,850	71,438	73,025 98,425	74,613
2	50,800	52,388	53,975	55,563	57,150	04 138	95 795	87 313	88 900	90 488	92.075	93,663	95,250	96,838	98,425 123,83	100.01
3	76,200	77,788	79,375	80,963	82,550	100 54	111 13	119 71	114 30	115.89	117.48	119,06	120,65	122,24	123,83	125,41
4	101,60	103,19	104,78	106,36	107,95	109,54	111,10	112,11	111,00	110,0						
1		100.50	100.10	191 76	192 35	134 94	156 53	138.11	139.70	141,29	142,88	144,46	146,05	147,64	149,23 174,63	150,81
5	127,00	128,59	150,10	157.16	159.75	160 34	161.93	163.51	165.10	166,69	168,28	169,86	171,45	173,04	174,63 200,03	176,21
6	152,40	153,99	190,00	109.56	184 15	185.74	187.33	188.91	190,50	192,09	193,68	195,26	196,85	198,44	200,03 225,43	201,6
7	177,80	179,39	100,98	207.06	200 55	911 14	212.73	214.31	215,90	217,49	219,08	220,66	222,25	223,84	225,43 250,83	227,0
8	203,20	204,79	200,00	207,00	224 05	236 54	238.13	239,71	241,30	242,89	244,48	246,06	247,65	249,24	250,83	252,4
П							000 50	0.05 11	966 70	268 20	269 88	271 46	273.05	274,64	276,23 301,63	277,8
0	254,00	255,59	257,18	258,76	260,35	261,94	203,33	200,11	200,70	293 69	295 28	296.86	298,45	300,04	301,63	303,2
1	279,40	280,99	282,58	284,16	285,75	287,34	200,00	230,01	017.50	210.00	220.68	299 96	323 85	325.44	327.03	328.6
2	304.80	306,39	307,98	309,56	311,15	312,74	314,00	310,31	040,00	944 40	246 08	247 66	349 95	350 84	352.43	354.0
3	330,20	331,79	333,38	334,96	336,55	338,14	339,73	966 71	368 30	360.80	371 48	373.06	374.65	376,24	377,83	379,4
4	355,60	357,19	358,78	360,36	361,95	363,54	303,10	300,71	000,00	000,00	011,11					
Ш				005 50	005 05	000 04	200.55	309 11	393 70	395.29	396.88	398,46	400,05	401,64	403,23 428,63	404,8
5	381,00	382,59	384,18	385,76	387,30	388,94	415.09	417 51	419 10	420 69	422.28	423,86	425,45	427,04	428,63 454,03	430,2
16	406,40	407,99	409,58	411,16	412,75	414,34	441 99	417,01	444 50	446 09	447.68	449,26	450,85	452,44	454,03 479,43	455,6
17	431,80	433,39	434,98	436,50	438,10	439,14	466 79	468 31	469 90	471 49	473.08	474.66	476,25	477,84	479,43 504,83	481,0
18	457,20	458,79	460,38	461,90	400,00	400,14	400,10	193 71	495 30	496.89	498.48	500,06	501,65	503,24	504,83	506,4
	500.00	500 50	511 19	519 76	514 35	515 94	517.53	519.11	520,70	522,29	523,88	525,46	527,05	528,64	530,23 555,63	531,8
20	500,00	594 00	536 58	538 16	539.75	541.34	542,9	544,51	546,10	547,69	549,28	550,86	552,45	554,04	555,63 581,03	500.0
21	558 90	560 20	561 08	563.56	565.15	566.74	568,3	569,91	571,50	573,09	574,68	576,26	577,85	579,44	581,03 606,43	082,0
22	504,00	500,39	507.30	588 06	590.55	592.14	593.7	3 595,31	596,90	598,49	600,08	601,66	603,25	604,84	606,43 631,83	608,0
23	200,00	080,79	619 78	614 36	615 95	617.5	619.13	620,71	622,30	623,89	625,48	627,06	628,65	630,24	631,83	033,4

S	0	1/16	1/8	3/16	1/4	5/16	3/8	7/16	1/2	9/16	5/8	11/16	3/4	13/16	7/8	15/16
25	625.00	636 59	638 18	639.76	641.35	642.94	644.53	646,11	647,70	649,29	650,88	652,46	654,05	655,64	657,23	658,8
20	000 10	001 00	CCOFO	665 16	666 75	668 34	669 93	671 51	673.10	674 69	676.28	077.80	079.40	001,04	002,00	004,2
20	B44 00	710 70	714 00	715 00	717 55	710 14	790 73	799 31	723 90	725 49	727 08	728.06	730.23	101,04	100,40	100,0.
29	736,60	738,19	739,78	741,36	742,95	744,54	746,13	747 71	749,30	750,89	752,48	754,06	755,65	757,24	758,83	760,4
30	762.00	763.59	765,18	766,76	768,35	769,94	771,53	773,11	774,70	776,29	777,88	779,46	781,05	782,64	784,23	785,8
		BOO 00	700 FO	700 10	709 75	705 94	706 02	708 51	800 10	801 69	803.28	804.8b	800.40	808.04	003.00	OIL
20	010 00	01400	015 00	017 50	91015	820 74	899 33	893 91	825 50	827 09	828.08	830.26	65.165	000,44	000,00	000,0
0.0	000 00	000 70	0.41 00	040 00	944 55	946 14	847 73	849 31	850 90	852 44	854 118	8555.00	001.20	000.04	000,40	000,0
34	863,60	865,19	866,78	868,36	869,95	871,54	873,13	874,71	876,30	877,89	879,48	881,00	002,00	004,24	000,00	001,4
0.5	000.00	900 50	909 19	902.76	805 35	896 94	898 53	900 11	901.70	903.29	904.88	906,46	908,05	909,64	911,23	912,8
20	014 40	015 00	015 50	010 16	090 75	000 24	0.93 03	995 51	997 10	928.69	930 28	931.86	933.43	900,04	900,03	200,2
300	000 00	041 00	040 00	04450	046 15	047 74	040 33	950 91	452 50	954 09	955 08	907.20	900.00	300,44	302,00	200,0
20	OCE OO	000 70	000 00	060 06	071 55	073 14	974 73	976 31	977.90	979.49	981.08	982.00	984,20	900,04	901,40	200,0
20	000,20	009 10	003 78	995.36	995 95	998.54	1000.1	1001.7	1003.3	1004,9	1006,5	1008,1	1009,7	1011,2	1012,8	1014,
- 1																
40	1016.0	1017 6	1019 2	1020.8	1022.4	1023,9	1025,5	1027,1	1028,7	1030,3	1031,9	1033,5	1035,1	1036,6	1038,2	1039
4.5	1041 4	1040 0	1044 6	1046 9	1047 8	10403	1050 0	1059 5	10541	1055.7	1057.3	1058.9	1000,5	1002,0	1003,0	1000,
40	1000 0	1000 4	1070 0	1071 6	1079 9	1074 7	1076 3	1077 9	1079 5	1081.1	1082.7	1084.3	1099.9	1001,4	1009,0	1000
49	1000 9	1009 0	1005 4	1007 0	10986	1100 1	1101 7	1103 3	1104 9	1106.5	1108.1	1109.7	1111,3	1112,0	1114,4	1110
44	1117,6	1119,2	1120,8	1122,4	1124,0	1125,5	1127,1	1128,7	1130,3	1131,9	1133,5	1135,1	1136,7	1138,2	1139,8	1141
45	11 49 0	1144 6	1146 9	1147 9	11494	1150 9	1152.5	1154.1	1155.7	1157.3	1158.9	1160,5	1162,1	1163,6	1165,2	1166
4.0	1100 4	1170 0	1171 6	1179 9	1174 8	1176 3	11779	11179 5	11181.1	11182.7	1184.3	1185.9	1107,0	1109,0	11 90,0	1100
4.77	11000	1105 4	11070	1100 0	1900 9	1901 7	1903 3	1904 9	1206 5	1208.1	1209.7	1211.3	1212.9	1214,4	1210,0	1216
40	1010 0	1000 0	149494) 4	1994 0	1995 6	19971	1228.7	11230.3	1231 9	1233.5	1235.1	1230,7	1230,3	1200,0	1441,4	1240
49	1244.6	1246,2	1247,8	1249,4	1251,0	1252,5	1254,1	1255,7	1257,3	1258,9	1260,5	1262,1	1263,7	1265,2	1266,8	1268
- 0	10000	1071 6	1979 9	1974 9	1976 4	1977 0	1979 5	1981 1	1282 7	1284 3	1285.9	1287.5	1289.1	1290,6	1292,2	1293
- 1	1005 4	1007 0	1000 0	1900 0	1301 8	1303 9	1304 9	11306.5	1308 1	1309 7	1311.3	1312.9	1314.3	1910'0	1011,0	1010
	1000 0	1000 4	19040	1905 0	12979	1298 7	11330.3	1331 (113335	13351	1336.7	1338.3	1339.9	1041,4	1040,0	1944
- 0	1040 0	1947 0	1940 4	1951 0	1359 6	1 1 2 5 4 1	1355 7	1357 3	1358 9	11360.5	1302.1	1303.7	1300.3	19000'0	1000,4	1010
5.4	1371 6	1373 9	1374 8	1376.4	1378.0	1379	1381 1	1382.7	1384.3	1385.9	1387.4	1389,1	1390,7	1392,2	1393,8	1395

Fuß			Z	ıll		
rus	0	1	2	3	4	5
0	0	25,4	50,8	76,2	101,6	127,0
1	304,8	330,2	355,6	381,0	406,4	431,8
2	609,6	635,0	660,4	685,8	711,2	736,6
3	914,4	939,8	965,2	990,6	1016,0	1041,4
4	1 219,2	1244,6	1 270,0	1 295,4	1320,8	1346,2
5	1 524,0	1549,4	1 574,8	1 600,2	1625,6	1651,0
6	1 828,8	1854.2	1879,6	1 905,0	1 930,4	1 955,8
7	2 133,6	2159.0	2184,4	2 209,8	2 235,2	2 260,6
8	2 438,4	2463.8	2489,2	2 514,6	2 540,0	2 565,4
9	2 743,2	2768.6	2794,0	2 819,4	2 844,8	2 870,2
10	3 048,0	3073.4	3098,8	3 124,2	3 149,6	3 175,0
11	3 352,8	3 378,2	3 403,6	3 429,0	3 454,4	3 479,8
12	3 657,6	3 683,0	3 708,4	3 733,8	3 759,2	3 784,6
13	3 962,4	3 987,8	4 013,2	4 038,6	4064,0	4 089,4
14	4 267,2	4 292,6	4 318,0	4 343,4	4 368,8	4 394,2
15	4 572,0	4 597,4	4 622,8	4 648,2	4 673,6	4 699,0
16	4 876,8	4 902,2	4 927.6	4 953,0	4 978,4	5 003,8
17	5 181,6	5 207,0	5 232.4	5 257,8	5 283,2	5 308,6
18	5 486,4	5 511,8	5 537.2	5 562,6	5 588,0	5 613,4
19	5 791,2	5 816,6	5 842.0	5 867,4	5 892,8	5 918,2
20	6 096,0	6 121,4	6 146.8	6 172,2	6 197,6	6 223,0
21	6 401,8	6 426,2	6 451.6	6 477.0	6 502,4	6 527,8
22	6 705,6	6 731,0	6 756.4	6781.8	6 807,2	6 832,6
23	7 010,4	7 035,8	7 061.2	7086.6	7 112,0	7 137,4
24	7 315,2	7 340,6	7 366.0	7391.4	7 416,8	7 442,2
25	7 620,0	7 645,4	7 670.8	7 696.2	7 721,6	7 747,0
26	7 925,8	7 950,2	7 975,6	8 001,0	8 026,4	8 051,8
27	8 229,6	8 255,0	8 280,4	8 305,8	8 331,2	8 356,6
28	8 534,4	8 559,8	8 585,2	8 610,6	8 636,0	8 661,4
29	8 839,2	8 864,6	8 890,0	8 915,4	8 940,8	8 966,2
30	9 144,0	9 169,4	9 194,8	9 220,2	9 245,6	9 271,0
31	9 448,8	9 474,2	9499,6	9 525,0	9 550,4	9 575,8
32	9 753,6	9 779,0	9804,4	9 829,8	9 855,2	9 880,6
33	10 058,4	10 083,8	10109,2	10 134,6	10 160,0	10 185,4
34	10 363,2	10 388,6	10414,0	10 439,4	10 464,8	10 490,2
35	10 668,0	10 693,4	10718,8	10 744,2	10 769,6	10 795,0
36	10 972,8	10 998.2	11 023,6	11 049,0	11 074,4	11099,8
37	11 277,6	11 303,0	11 328,4	11 353,8	11 379,2	11404,6
38	11 582,4	11 607,8	11 633,2	11 658,6	11 684,0	11709,4
39	11 887,2	11 912,6	11 938,0	11 963,4	11 988,8	12014,2
40	12 192,0	12 217,4	12 242,8	12 268,2	12 293,6	12319,0

Fuß	-		Z	oll		
EUD	6	7	8	9	10	11
0	152,4	177,8	203,2	228.6	254,0	279,4
1	457,2	482,6	508,0	533,4	558,8	584,2
2	762,0	787,4	812,8	838,2	863,6	889,0
3	1 066,8	1 092,2	1117,6	1 143,0	1168,4	1 193,8
4	1 371,6	1 397,0	1422,4	1 447,8	1473,2	1 498,6
5	1 676,4	1 701,8	1727,2	1 752,6	1778,0	1 803,4
6	1 981,2	2 006,6	2032,0	2057,4	2 082,8	2108,2
7	2 286,0	2 311,4	2336,8	2362,2	2 387,6	2413,0
8	2 590,8	2 616,2	2641,6	2667,0	2 692,4	2717,8
9	2 895,6	2 921,0	2946,4	2971,8	2 997,2	3022,6
10	3 200,4	3 225,8	3251,2	3276,6	3 302,0	3327,4
11	3 505,2	3 530,6	3 556,0	3 581,4	3 606,8	3 632,2
12	3 810,0	3 835,4	3 860,8	3 886,2	3 911,6	3 937,0
13	4114,8	41 40,2	4 165,6	4 191,0	4 216,4	4 241,8
14	4 419,6	4 445,0	4 470,4	4 495,8	4 521,2	4 546,6
15	4724,4	4 749,8	4 775,2	4 800,6	4 826,0	4 851,4
16	5029,2	5 054,6	5 080,0	5105,4	5 130,8	5156,2
17	5334,0	5 359,4	5 384,8	5410,2	5 435,6	5461,0
18	5638,8	5 664,2	5 689,6	5715,0	5 740,4	5765,8
19	5943,6	5 969,0	5 994,4	6019,8	6 045,2	6070,6
20	6248,4	6 273,8	6 2 99,2	6324,6	6 350,0	6375,4
21	6553,2	6 578,6	6 604,0	6 629,4	6 654,8	6680,2
22	6858,0	6 883,4	6 908,8	6 934,2	6 959,6	6985,0
23	7162,8	7 188,2	7 213,6	7 239,0	7 264,4	7289,8
24	7467,6	7 493,0	7 518,4	7 543,8	7 569,2	7594,6
25	7772,4	7 797,8	7 823,2	7 848,6	7 874,0	7899,4
26	8 077,2	8 102,6	8128,0	8 153,4	8178,8	8 204,2
27	8 382,0	8 407,4	8432,8	8 458,2	8483,6	8 509,0
28	8 686,8	8 712,2	8737,6	8 763,0	8788,4	8 813,8
29	8 991,6	9017,0	9042,4	9 067,8	9093,2	9 118,6
30	9 296,4	9 321,8	9347,2	9 372,6	9398,0	9 423,4
31	9601,2	9 626,6	9652.0	9677,4	9702,8	9728,2
32	9906,0	9 931,4	9956.8	9982,2	10007,6	10033,0
33	10210,8	10 236,2	10261.6	10287,0	10312,4	10337,8
34	10515,6	10 541,0	10566.4	10591,8	10617,2	10642,6
35	10820,4	10 845,8	10871.2	10896,6	10922,0	10947,4
36	11 125,2	11 150,6	11176,0	11 201,4	11 226,8	11 252,2
37	11 430,0	11 455,4	11480,8	11 506,2	11 531,6	11 557,0
38	11 734,8	11 760,2	11785,6	11 811,0	11 836,4	11 861,8
39	12 039,6	12 065,0	12090,4	12 115,8	12 141,2	12 166,6
40	12 344,4	12 369,8	12395,2	12 420,6	12 446,0	12 471,4

Zahlentafel 57

Meter	Fuß	Meter	Fuß	Meter	Fuß	Meter	FuB
1	3,2809	26	85,3034	51	167,3258	76	249,3483
2 3	6,5618	27	88,5843	52	170,6067	77	252,6292
3	9,8427	28	91,8652	53	173,8876	78	255,9101
5	13,1236	29	95,1461	54	177,1685	79	259,1910
5	16,4045	30	98,4270	55	180,4494	80	262,4719
6	19,6854	31	101,7079	56	183,7303	81	265,7528
7	22,9663	32	104,9888	57	187,0112	82	269,0337
8 9	26,2472	33	108,2697	58	190,2921	83	272,3146
9	29,5281	34	111,5506	59	193,5730	84	275,5955
10	32,8090	35	114,8315	60	196,8539	85	278,8764
11	36,0899	36	118,1124	61	200,1348	86	282,1573
12	39,3708	37	121,3933	62	203,4157	87	285.4382
13	42,6517	38	124,6742	63	206,6966	88	288,7191
14	45,9326	39	127,9551	64	209,9775	89	292,0000
15	49,2135	40	131,2360	65	213,2584	90	295,2809
16	52,4944	41	134,5169	66	216,5393	91	298,5618
17	55,5753	42	137,7978	67	219,8202	92	301,842
18	59.0562	43	141,0787	68	223,1011	93	305,123
19	62,3371	44	144.3596	69	226,3820	94	308,404
20	65,6180	45	147,6405	70	229,6629	95	311,685
21	68,8989	46	150,9214	71	232,9438	96	314,966
22	72,1798	47	154,2023	72	236,2247	97	318,247
23	75,4607	48	157,4832	73	239,5056	98	321,528
24	78,7416	49	160,7641	74	242,7865	99	324,809
25	82,0225	50	164.0450	75	246.0674	100	328.089

Engl. Fuß in m

Zahlentafel 58

Fuß	Meter	Fuß	Meter	Fuß	Meter	Fuß	Meter
1	0,3048	26	7,9246	51	15,5445	76	23,1643
3	0,6096	27	8,2294	52	15,8493	77	23,4691
3	0,9144	28	8,5342	53	16,1541	78	23,7739
5	1,2192	29	8,8390	54	16,4589	79	24,0797
	1,5240	30	9,1443	55	16,7637	80	24,3835
6	1,8288	31	9,4486	56	17,0685	81	24,6883
	2,1335	32	9,7534	57	17,3733	82	24,9931
8	2 4383	33	10,0582	58	17,6780	83	25,2979
9	2,7431	34	10,3630	59	17,9828	84	25.6027
10	3.0481	35	10,6678	60	18,2886	85	25,9075
11	3,3527	36	10,9726	61	18,5924	86	26,2123
12	3,6575	37	11,2774	62	18,8972	87	26,5171
13	3,9623	38	11,5822	63	19,2020	88	26,8219
14	4,2671	39	11,8870	64	19,5068	89	27.1267
15	4,5721	40	12,1918	65	19,8116	90	27,4315
16	4,8767	41	12,4966	66	20,1164	91	27,7363
17	5,1815	42	12,8013	67	20,4212	92	28,0410
18	5,4863	43	13,1061	68	20,7260	93	28,3458
19	5,7911	44	13,4109	69	21,0308	94	28,6506
20	6,0959	45	13,7157	70	21,3356	95	28,9554
21	6,4010	46	14,0205	71	21,6404	96	29,2602
22	6,7055	47	14,3253	72	21,9452	97	29,5650
23	7,0103	48	14,6301	73	22,2500	98	29,8108
24	7,3151	49	14,9349	74	22,5548	99	30,1746
25	7,6203	50	15,2405	75	22,8595	100	30,4810

m² in engl. Quadratfuβ

Qu	Quadrat-	Qu	Quadrat-	Qu	Quadrat-	Qu	Quadrat-
Meter	Fuß	Meter	Fuß	Meter	Fuß	Meter	Fuß
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	10,764 21,529 32,293 43,057 53,821 64,586 75,350 86,114 96,879 107,643 118,407 129,172 139,936 150,700 161,424 172,229 182,193 193,757 204,522 215,286 226,050 236,815 247,579 258,343 269,107	26 27 28 29 30 31 32 33 34 35 36 37 38 39 41 42 43 44 45 46 47 48 49 50	279,872 290,636 301,400 312,165 322,929 333,693 344,458 355,222 365,986 376,750 387,515 398,279 409,043 419,808 430,572 441,336 442,865 442,865 443,639 444,393 452,101 462,865 505,922 516,686 527,451 538,215	51 52 53 54 554 567 58 60 61 62 63 64 65 66 67 689 71 72 73 74 75	548,979 559,744 570,508 581,272 592,036 602,801 613,565 624,329 635,094 645,858 656,622 667,387 678,151 688,915 699,679 710,444 721,208 731,972 7753,501 764,265 775,030 785,794 796,558 807,322	76 778 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99	818,087 828,851 839,615 850,380 861,144 871,908 882,437 904,201 914,965 925,730 936,494 947,258 958,023 968,787 979,551 990,316 101,080 1011,844 1022,608 1033,373 1044,137 1054,901 1065,666

Engl. Quadrat†uβ in m²

Zahlentafel 60

Qu Fuß	Quadrat- Meter	Qu Fuß	Quadrat- Meter	Qu Fuß	Quadrat- Meter	Qu Fuß	Quadrat- Meter
1	0.0929	26	2,4154	51	4,7379	76	7,0604
2 3	0,1858	27	2,5083	52	4.8308	77	7,1533
3	0,2787	28	2,6012	53	4,9237	78	7,2462
4	0,3716	29	2.6941	54	5.0166	79	7,3391
5	0,4645	30	2,7870	55	5.1095	80	7,4320
6	0,5574	31	2,8799	56	5,2024	81	7,5249
6	0,6503	32	2,9728	57	5,2953	82	7,6178
8	0,7432	33	3,0657	58	5,3882	83	7,7107
9	0,8361	34	3,1586	59	5,4811	84	7,8036
10	0,9290	35	3,2515	60	5,5740	85	7,8965
11	1,0219	36	3,3444	61	5,6669	86	7,9894
12	1,1148	37	3,4373	62	5,7598	87	8,0823
13	1,2077	38	3,5302	63	5,8527	88	8,1752
14	1,3006	39	3,6231	64	5,9456	89	8,2681
15	1,3935	40	3,7160	65	6,0385	90	8,3610
16	1,4864	41	3,8089	66	6,1314	91	8,4539
17	1,5793	42	3,9018	67	6,2243	92	8,5468
18	1,6722	43	3,9947	68	6,3172	93	8,6397
19	1,7651	44	4,0876	69	6,4101	94	8,7326
20	1,8580	45	4,1805	70	6,5030	95	8,8255
21	1,9509	46	4,2734	71	6,5959	96	8,9184
22	2,0438	47	4,3663	72	6,6888	97	9,0113
23	2,1367	48	4,4592	73	6,7817	98	9,1042
24	2,2296	49	4,5521	74	6,8746	99	9,1971
25	2,3225	50	4,6450	75	6,9675	100	9,2900

Kub,- Mtr.	Kubik- Fuß	Kub	Kubik- Fuß	Kub Mtr.	Kubik- Fuß	Kub Mtr.	Kubik- Fuß
0,5	17,658	14	494,425	27.5	971.193	41	1447,960
1	35,316	14,5	512,084	28	988,850	41,5	1465,618
1,5	52,974	15	529,742	28,5	1006,509	42	1483,276
2	70,632	15,5	547,400	29	1024,168	42,5	1500,933
2,5	88,290	16	565,075	29,5	1041.826	43	1518,590
3	105 948	16,5	582,716	30	1059,483	43,5	1536,247
3,5	123,606	17	600,374	30,5	1077,142	44	1553,904
4	141,264	17.5	618,032	31	1094,800	44,5	1571,563
4,5	158,922	18	635,690	31,5	1112,457	45	1589,222
5	176,581	18,5	653,349	32	1130,115	45.5	1606,881
5,5	194,238	19	671,008	32,5	1147,773	46	1624,540
6	211,897	19.5	688,665	33	1165,432	46,5	1642,198
6,5	229,555	20	706,322	33,5	1183,090	47	1659,856
7	247,213	20,5	723,980	34	1200,748	47,5	1677,512
7,5	264.871	21	741,638	34,5	1218,406	48	1695,172
8	282,529	21,5	759,295	35	1236,064	48,5	1712,829
8,5	300,187	22	776,952	35,5	1253,722	49	1730,490
9	317.845	22,5	794,611	36	1271,380	49,5	1748.147
9,5	335,504	23	812,270	36,5	1289,039	50	1765,805
10	353,161	23,5	829,928	37	1306,698	50,5	1783,464
10,5	370,819	24	847,584	37,5	1324,357	51	1801,122
11	388,476	24,5	865,245	38	1342,016	51,5	1818,782
11,5	406,135	25	882,902	38,5	1359,673	52	1836,440
12	423,793	25,5	900,562	39	1377,330	52,5	1854,098
12,5	441,452	26	918,220	39,5	1394,987	53	1871,756
13	459,110	26,5	935,878	40	1412,644	53,5	1889,414
13,5	476,768	27	953,536	40,5	1430,302	54	1907.072

Engl. Kubikf	$u\beta$	in	m^3
--------------	----------	----	-------

Zahlentafel 62

Kub Fuß	Kubik- Meter	Kub Fuß	Kubik- Meter	Kub Fuß	Kubik- Meter	Kub Fuß	Kubik- Meter
1	0,0283	14,5	0,4106	28	0,7928	41,5	1,1752
1,5	0,0425	15	0,4247	28,5	0,8070	42	1,1892
2	0,0566	15,5	0,4389	29	0,8211	42,5	1,2034
2,5	0,0708	16	0,4530	29.5	0,8353	43	1,2176
2 2,5 3	0.0849	16.5	0,4672	30	0.8495	43,5	1.2318
3,5	0.0991	17	0.4814	30.5	0,8637	44	1,2458
4	0.1133	17.5	0.4956	31	0.8777	44.5	1,2600
4,5	0,1275	18	0,5097	31,5	0,8919	45	1,2742
5	0.1416	18,5	0.5239	32	0.9051	45,5	1.2884
5,5	0.1558	19	0.5380	32,5	0.9193	46	1.3026
6	0,1699	19,5	0,5522	33	0,9344	46,5	1,3168
6,5	0.1841	20	0.5663	33,5	0.9486	47	1,3310
7	0.1982	20,5	0.5805	34	0.9628	47,5	1,3452
7,5	0.2124	21	0,5946	34,5	0,9770	48	1.3592
8	0.2265	21,5	0.6088	35	0,9912	48.5	1.3734
8,5	0.2407	22	0.6229	35.5	1.0054	49	1.3876
9	0.2548	22,5	0,6371	36	1.0194	49.5	1,4018
9,5	0.2690	23	0,6513	36,5	1.0336	50	1.4158
10	0.2832	23,5	0,6655	37	1.0478	50,5	1.4300
10,5	0,2974	24	0,6796	37.5	1,0620	51	1,4442
11	0,3115	24.5	0,6938	38	1.0760	51,5	1.4584
11,5	0,3257	25	0.7079	38,5	1,0902	52	1,4724
12	0.3398	25,5	0.7221	39	1,1044	52,5	1,4866
12,5	0.3540	26	0.7362	39.5	1.1186	53	1.5008
13	0,3681	26,5	0,7504	40	1,1326	53,5	1.5150
13.5	0.3823	27	0.7645	40,5	1.1468	54	1,5390
14	0.3964	27,5	0,7787	41	1,1610	54,5	1,5532

Liter	Gallonen	Liter	Gallonen	Liter	Gallonen	Liter	Gallonen
1	0,22	26	5,72	51	11,22	76	16,73
2	0,44	27	5,94	52	11,44	77	16,95
2 3 4 5 6 7 8 9	0.66	28	6,16	53	11,67	78	17,17
4	0,88	29	6.38	54	11,89	79	17,39
5	1.10	30	6,60	55	12,11	80	17,61
6	1,32	31	6,82	56	12,33	81	17,83
7	1,54	32	7,04	57	12,55	82	18,05
8	1,76	33	7,26	58	12,77	83	18,27
9	1.98	34	7,48	59	12,99	84	18,49
10	2,20	35	7,70	60	13,21	85	18.71
11	2,42	36	7,92	61	13,43	86	18,93
12	2,64	37	8,14	62	13,65	87	19,15
13	2,86	38	8,36	63	13,87	88	19,37
14	3,08	39	8,58	64	14,09	89	19,59
15	3,30	40	8,80	65	14,31	90	19,81 20,03
16	3,52	41	9,02	66	14,53	91	20,03
17	3.74	42	9,24	67	14,75	92 93	20,25
18	3,96	43	9,46	68	14,97	93	20.69
19	4.18	44	9,68	69	15,19 15,41	95	20,05
20	4,40	45	9,90	70	15,63	96	21.13
21	4,62	46	10,12 10,34	72	15.85	97	21,35
22	4,84		10,54	73	16.07	98	21,57
23	5,06	48 49	10,36	74	16.29	99	21.79
24	5,28 5,50	50	11.00	75	16,51	100	22,01

Engl. (Imp.) Gallonen in Litern

Gall.	Liter	Gall.	Liter	Gall.	Liter	Gall.	Liter
1	4,5435	26	118,130	51	231,717	76	345,304
2	9.087	27	122,674	52	236,260	77	349,847
2 3	13,630	28	127,217	53	240,804	78	354,391
4	18.174	29	131,761	54	245,347	79	358,934
5	22.717	30	136,304	55	249,891	80	363,478
5 6	27,261	31	140,848	56	254,434	81	368,021
7	31,804	32	145,391	57	258,978	82	372,565
8	36,348	33	149,935	58	263,521	83	377,108
7 8 9	40,891	34	154,478	59	268,065	84	381,651
10	45,435	35	159,021	60	272,608	85	386,195
11	49,978	36	163,565	61	277,152	86	390,738
12	54.522	37	168.108	62	281,695	87	395,282
13	59,065	38	172,652	63	286,239	88	399,825
14	63,609	39	177.195	64	290,782	89	404,369
15	68.152	40	181,739	65	295,326	90	408,912
16	72,696	41	186,282	66	299,869	91	413,456
17	77.239	42	190.826	67	304,412	92	417,999
18	81,782	43	195,369	68	308,956	93	422,543
19	86,326	44	199,913	69	313,499	94	427,086
20	90,869	45	204,456	70	318,043	95	431,630
21	95,413	46	209,000	71	322,586	96	436,173
22	99,956	47	213,543	72	327,130	97	440,717
23	104,500	48	218,087	73	331,673	98	445,260
24	109,043	49	222,630	74	336,217	99	449,804
25	113,587	50	227,173	75	340.760	100	454,347

Zahlentafel 65

kg	Pfund	kg	Pfund	kg	Pfumd	kg	Pfund
1	2,2046	26	57,320	51	112,435	76	167,550
1 2 3 4 5 6	4,409	27	59,524	52	114,639	77	169,754
3	6,614	28	61,729	53	116.844	78	171.959
4	8,818	29	63,933	54	119,048	79	174,163
5	11,023	30	66,138	55	121,253	80	176,368
6	13,228	31	68,343	56	123,458	81	178,573
7	15,432	32	70,547	57	125,662	82	180.777
8	17,637	33	72,752	58	127,867	83	182,982
9	19,841	34	74,956	59	130,071	84	185.186
10	22,046	35	77,161	60	132,276	85	187,391
11	24,251	36	79,366	61	134.481	86	189.596
12	26,455	37	81,570	62	136.685	87	191,800
13	28,660	38	83,775	63	138,890	88	194,005
14	30,864	39	85,979	64	141.094	89	196,209
15	33,069	40	88.184	65	143,299	90	198,414
16	35,274	41	90.389	66	145,504	91	200,619
17	37,478	42	92,593	67	147,708	92	202,823
18	39.683	43	94,798	68	149.913	93	205.028
19	41.887	44	97.002	69	152,117	94	207,232
20	44.092	45	99.207	70	154.322	95	209,437
21	46,297	46	101,412	71	156,527	96	211,642
22	48,501	47	103,616	72	158,731	97	213,846
23	50,706	48	105,821	73	160,936	98	216.051
24	52,910	49	108.025	74	163,140	99	218.255
25	55,115	50	110,231	75	165,345	100	220,462

Engl. Pfund in kg

Zahlentafel 66

Pfumd	kg	Pfund	kg	Pfund	kg	Pfund	kg
1	0,453593	26	11,793418	51	23,133243	76	34,473068
3	0,907186	27	12,247011	52	23,586836	77	34,926661
3	1,360779	28	12,700604	53	24,040429	78	35,380254
5	1,814372	29	13,154197	54	24,494022	79	35,833847
	2,267965	30	13,607790	55	24,947615	80	36.287440
6	2,721588	31	14,061383	56	25.481208	81	36,741033
7	3,175151	32	14,514976	57	25,854801	82	37,194626
8	3,628744	33	14,968569	58	26,308394	83	37.648219
9	4,082337	34	15,422162	59	26,761987	84	38,101812
10	4.535930	35	15,875755	60	27,215580	85	38,555404
11	4,989523	36	16,329348	61	27,669173	86	39,008998
12	5,443116	37	16,782941	62	28.122766	87	39,462591
13	5,896709	38	17,236534	63	28,576359	88	39,916184
14	6,350302	39	17,690127	64	29.029952	89	40.369777
15	6,803895	40	18.143720	65	29,483545	90	40,823370
16	7.257485	41	18.597313	66	29.937138	91	41,276963
17	7,711081	42	19,050906	67	30,390731	92	41,730556
18	8.164674	43	19,504499	68	30.844324	93	42,184149
19	8,618267	44	19,958092	69	31,297917	94	42,637742
20	9,071860	4.5	20,411685	70	31,751510	95	43.091335
21	9,525453	46	20,865278	71	32,205103	96	43,544928
22	9,979046	47	21,318871	72	32,658696	97	43.998521
23	10,432639	48	21,772464	73	33,112289	98	44,452114
24	10,886232	49	22,226057	74	33,565882	99	44,905707
25	11,339825	50	22,679650	75	34,019475	100	45,359300

km in engl. Landmeilen

Zahlentafel 67

km	Meilen	km	Meilen	km	Meilen	km	Meilen
1	0,621	26	16,156	51	31,690	76	47,225
2	1,243	27	16,777	52	32,312	77	47,846
3	1,864	28	17,399	53	32,933	78	48,468
4	2,485	29	18,020	54	33,544	79 80	49,089
5	3,107	30	18,641	55	34,176	81	50,33:
6	3,728	31	19,263	56	34,797	82	50.95
7	4,350	32	19,884	57 58	35,419 36,040	83	51.574
2 3 4 5 6 7 8 9	4,971	33	20,505 21,127	59	36,661	84	52.190
9	5,592	34	21,748	60	37.283	85	52,81
10	6,214	35 36	22,370	61	37,904	86	53,439
11	6,835	37	22,991	62	38.525	87	54,060
12	7,457 8,078	38	23,612	63	39,147	88	54,68
13 14	8,699	39	24,234	64	39,768	89	55,30
15	9,321	40	24,855	65	40,390	90	55,92
16	9,942	41	25,477	66	41,011	91	56,54
17	10,563	42	26.098	67	41,632	92	57,16
18	11.185	43	26.719	68	42,254	93	57,78
19	11.806	44	27,341	69	42,875	94	58,41
20	12.428	45	27,962	70	43,497	95	59,03
21	13,049	46	28,583	71	44,118	96	59,653 60,27
22	13,670	47	29,205	72	44,739	97 98	60,89
23	14,292	48	29,826	73	45,361	99	61.51
$\frac{24}{25}$	14,913 15,534	49 50	30,448 31,060	74 75	45,982 46,603	100	62.138

Engl. Landmeilen in km

Zahlentafel 68

Meilen	km	Meilen	km	Meilen	km	Meilen	km
1	1,609321	26	41.842346	51	82,075371	76	122,30839
•)	3.218642	27	43.451667	52	83,684692	77	123,91771
3	4,827963	28	45.060988	53	85,294013	78	125,52703
4	6,437284	29	46,670309	54	86,903334	79	127,13635
5	8.046605	30	48,279630	55	88,512655	80	128,74568
6	9,655926	31	49,888951	56	90,121976	81	130,35500
7	11,265247	32	51,498272	57	91,731297	82	131,96432
7 8 9	12,874568	33	53,107593	58	93,340618	83	133,57364
9	14.483889	34	54,716914	59	94,949939	84	135,18296
10	16.093210	35	56,326235	60	96,559260	85	136,79228
11	17,702531	36	57,935556	61	98,168581	86	138,40160
12	19,311852	37	59,544877	62	99,777902	87	140,0109:
13	20.921173	38	61,154198	63	101,387223	88	141,6202
14	22,530494	39	62,763519	64	102,996544	89	143,2295
15	24,139815	40	64,372840	65	104,605865	90 91	144,8388
16	27,749136	41	65.982161	66	106,215186	91	146,4482
17	27,358457	42	67,591482	67	107,824507		148,0575 149,6668
18	28.967778	43	69,200803	68	109,433828	93 94	151.2761
19	30,577099	44	70,810124	69	111,043149	95	152,8854
20	32,186420	45	72.419445	70	112,652470	96	154,4948
21	33,795741	46	74,028766	71	114,261791		156,1041
22	35,405062	47	75,638087	72	115,871112		157,7134
23	37,014383	48	77,247408	73	117,480433 119,089754	99	159,3227
24	38,623704	49	78,856729		120,699075	100	160.9321
25	40,233025	50	80,466050	1 70	150,099073	100	100,0001

cm ² 1,0 1,2 1,4 1,6 1,8	QuZoll 14,223 17,068 19,112	6,4 6,6	QuZoll 91,027	cm ²	QuZoll	cm ²	
1,2 1,4 1,6	17,068 19,112				107 000		QuZoll
1.4	19,112		93,872	11.8	167,832	17,2	244,636 247,479
1,6		6 0	96,716	12,0 12,2	170,676 173,520	17.4	250,324
1 0	22,757	6.8 7.0	99,561	12,4		17,6	
	25,601	7,2	102,406		176,366	17.8	253,170
2,0	28,446		105,250	12,6	179,210	18,0	256,014 258,858
2,2	31.291	7.4	108,250	12,8	182,054	18,2	
2,4	34.135	7.6 7.8		13,0	184,900	18,4	261,704
2,6	36,980	8,0	110,939 113,784	13,2	187,744 190,588	18,6	264,549
2,8	39,824		116,629	13,4	190,000	18,8	267,392
3,0	42,669	8,2		13,6	193,432	19,0	270,238
3,2	45,514	8.4	119,473	13,8	196,278	19,2	273,081
3,4	48,358	8,6	122,318	14,0	199,122	19.4	275'926
3,6	51,203	8,8	125,162	14,2	201,966	19,6	278,770
3,8	54,047	9,0	128,007	14,4	204,812	19,8	281,616
4,0	56,892	9,2 9,4	130,852	14,6	207,656	20.0	284,460
4.2	59,737		133,696	14.8	210,500	20,2	287,304
4,4		9,6	136,541	15,0	213,345	20,4	290,148
4,6	62,581 65,426	9,8	139,385	15,2	216,190	20,6	292,994
4,8	68,270	10,0	142,230	15,4	219,034	20,8	295,840
5,0	71.115	10,2	145,074	15,6	221,880	21,0	298,683
5,2	73,960	10,4	147,919	15,8	224,724	21,2	301,528
5,4	76,804	10,6	150,764	16.0	227,568	21.4	304,373
5,6	79,649	10.8	153,608	16,2	230,412	21,6	307,217
5.0	83,493	11.0	156,453	16,4	233,256	21,8	310,062
5,8 6'0	85,338	11,2	159,297	16.6	236,102	22,0	312 906
6,2		11.4	162,142	16,8	238,948		
0,2	88,183	11,6	164,986	17,0	241,792		

Engl. Pfund je Quadratzoll in kg/cm²	Zahlentafel
--------------------------------------	-------------

211.811	junaje	quanti		8/		Lanic	nounce
Pfd.	kg	Pfd.	kg	Pfd.	kg	Pfd.	kg
QuZ.	cm ²	QuZ.	cm ²	QuZ.	cm ²	QuZ.	cm ²
100	7,031	154	10,827	208	14,624	262	18,421
102	7,171	156	10,968	210	14.765	264	18,561
104	7,312	158	11,109	212	14,905	266	18,702
106	7,452	160	11,249	214	15.046	268	18,842
108	7,593	162	11.390	216	15,186	270	18,983
110	7,734	164	11,530	218	15.327	272	19.123
112	7,874	166	11,671	220	15,467	274	19,264
114	8,014	168	11,812	222	15,608	276	19,405
116	8,155	170	11,952	224	15,748	278	19,545
118	8,296	172	12.093	226	15,889	280	19,686
120	8,437	174	12,233	228	16,030	282	19.827
122	8.587	176	12,374	230	16,171	284	19,967
124	8,728	178	12,515	232	16.311	286	20,108
126	8,868	180	12,655	234	16,452	288	20,248
128	9,009	182	12,796	236	16,593	290	20,389
130	9.140	184	12,937	238	16.734	292	20,530
132	9.281	186	13,077	240	16,874	294	20,670
134	9,421	188	13.218	242	17,015	296	20,811
136	9,562	190	13.358	244	17.155	298	20,951
138	9,702	192	13,499	246	17,296	300	21,092
140	9,843	194	13,639	248	17,436	302	21,232
142	9,983	196	13,780	250	17,577	304	21,373
144	10,124	198	13,921	252	17,718	306	21,514
146	10,265	200	14.062	254	17.858	308	21,655
148	10,405	202	14,202	256	17,999	310	21,795
150	10.546	204	14,343	258	18,140		
152	10.686	206	14.483	260	18.280		

kg mm²	Tons_ QuZoll	kg mm²	Tons_ QuZoll	kg mm²	Tons QuZoll	kg nim²	Tons QuZoll
10	6,348	33	20,949	56	35,552	79	50,152
11	6,983	34	21,584	57 58	36,186	80	50,787
12	7,618	35	22,219	58 59	36,820 37,455	81 82	51,420 52,055
13	8,253	36 37	22,854			83	52,690
14 15	8,888 9,522	38	23,489 24,124	60 61	38,090 38,724	84	53,315
16	10.157	39	24,759	62	39,358	85	53,960
17	10,137	40	25,393	63	39,983	86	54,595
18	11.427	41	26.027	64	40.628	87	55,231
19	12.062	42	26,663	65	41.264	88	55,864
20	12,697	43	27,297	66	41.898	89	56,498
21	13.329	44	27.932	67	42.533	90	57.133
22	13,966	45	28,566	68	43,168	91	57.768
23	14,601	46	29,202	69	43,803	92	58,404
24	15,236	47	29,837	70	44,415	93	59,039
25	15.870	48	30.471	71	45.072	94	59,674
26	16,506	49	31.107	72	45,708	95	60,310
27	17.136	50	31.742	73	46,343	96	60,944
28	17.772	51	32,376	74	46,978	97	61.578
29	18,410	52	33,012	75	47.612	98	62,213
30	19.045	53	33,646	76	48,248	99	62,847
31	19,679	54	34.272	77	48,883		.,
32	20,314	55	34.916	78	49,518		l.

Engl. Tonnen je Quadratzoll in kg/mm²

Zahlentafel 72

Tons QuZ.	kg mm²	Tons QuZ.	kg mm²	Tons QuZ.	kg mm²	Tons QuZ.	kg mm²
5	7,876	19	29,926	33	51,984	47	74,032
5,5	8,664	19,5	30,715	33,5	52,762	47,5	74,820
6	9,450	20	31,504	34	53,548	48	75 609
6,5	10,237	20,5	32,292	34,5	54,342	48,5	76,393
7	11,026	21	33,080	35	55,130	49	77,182
7.5	11,813	21,5	33,868	35,5	55,916	49,5	77,964
8	12,601	22	34,656	36	56,700	50	78,760
8,5	13,387	22,5	35,442	36,5	57,490	50,5	79,541
9	14,175	23	26,228	37	58,272	51	80,322
9,5	14,963	23,5	37,016	37,5	59,061	51,5	81,109
10	15,752	24	37,804	38	59,852	52	81,896
10,5	16,540	24,5	38,589	38,5	60,641	52,5	82,686
11	17,328	25	39,380	39	61,422	53	83,474
11,5	18,114	25.5	40,161	39,5	62,219	53,5	84,262
12	18,902	26	40,948	40	63,008	54	85,050
12,5	19,687	26,5	41,737	40,5	63,790	54,5	85,840
13	20,474	27	42,525	41	64,584	55	86,640
13,5	21,263	27,5	43,315	41.5	65,372	55,5	87,408
14	22,052	28	44,105	42	66,156	56	88,208
14.5	22,849	28,5	44,901	42,5	66,948	56,5	89,006
15	23,628	29	45,698	43	67,736	57	89,778
15,5	24,413	29,5	46,477	43,5	68,547	57,5	90,570
16	25,203	30	47,256	44	69,312	58	91,396
16,5	25,988	30,5	48,041	44,5	70,098	58,5	92,145
17	26,774	31 31,5	48,826	45	70,884	59	92,954
17,5	27,562	31,5	49,620	45,5	71,670	59,5	93,733
18	28,354	32	50,406	46	72,456	60	94,512
18,5	29,136	32,5	51,191	46,5	73,239	60,5	95,297

Kilometer in der Stunde = Englische Landmeilen in der Stunde = Meter in der Sekunde = Radumdrehungen in der Sekunde bei 1 m Raddurchmesser

Zahlentafel 73

Kilo- meter in der Stunde	Engl. Meilen in der Stunde	Meter in der Sekunde	Radum- drehung in der Sekunde	Kilo- meter in der Stunde	Engl. Meilen in der Stunde	Meter in der Sekunde	Radum- drehung in der Sekunde
5	3,11	1,39	0,44	70	43,50	19,45	6,20
10	6,21	2,78	0,88	75	46,60	20,84	6,65
15	9,32	4,17	1,32	80	49,71	22,22	7,08
20	12,43	5,56	1,77	85	52,82	23,61	7,53
25	15,53	6,95	2,22	90	55,92	25,00	7,97
30	18,64	8,34	2,66	95	59,03	26,39	8,41
35	21,75	9,73	3,10	100	62,14	27,80	8,86
40	24,85	11,11	3,54	105	65,24	29,19	9,30
45	27,96	12,50	3,99	110	68,35	30,58	9,74
50	31,06	13,90	4,43	115	71,46	31,96	10,19
55	34,18	15,29	4,87	120	74,57	33,34	10,63
60	37,28	16,67	5,32	125	77,67	34,73	11,08
65	40,39	18,06	5,75	130	80,78	36,12	11,50

Meter in der Sekunde = Kilometer in der Stunde = englische Landmeilen in der Stunde = Radumdrehungen in der Sekunde bei 1 m Raddurchmesser

Zahlentafel 74

Meter in der Sekunde	Kilometer in der Stunde	Engl. Meilen in der Stunde	Radumdrehungen in der Sek. bei 1 m Raddurchmesser
1	3,6	2,24	0,318
2	7,2	4,48	0,636
3	10,8	6,72	0,954
4	14,4	8,96	1,272
5	18,0	11,2	1,59
6	21,6	13,44	1,908
7	25,2	15,68	2,226
8	28,8	17,92	2,544
9	32,4	20,16	2,862
10	36,0	22,4	3,18
15	54,0	33,6	4,77
20	72,0	44,8	6,36
25	90,0	56,0	7,95
30	108,0	67,2	9,54
35	126,0	78,4	11,13
40	144,0	89,6	12,72
45	162,0	100.8	14,31

Weltzeit

Zahlentafel 75

- a) Mitteleuropäische Zeit (M.E.Z.) nach dem 15. Längengrad östlich von Greenwich: Dänemark, Deutschland, Italien, Norwegen, Österreich. Schweden, Schweiz, Serbien, Tschechoslowakei, Ungarn,
- b) Westeuropäische Zeit (W.E.Z.) nach dem Längengrad von Greenwich, 1 Stunde nach gegen M.E.Z.: Belgien, Frankreich, Großbritannien, Spanien.
- c) Osteuropäische Zeit (O.E.Z.) nach dem 30. Längengrade östlich von Greenwich, 1 Stunde vor gegen M.E.Z.: Ägypten, Bulgarien, Rumänien.
- d) Elnheitliche Landeszeiten nach den Längengraden der Hauptstädte: Griechenland, Niederlande, Portugal, Rußland.

24-Stunden-Uhr

Wenn es in Deutschland 12 Uhr ist, haben nachstehende Länder folgende Zeiten:

Europa	Uhr	Min.	1								Uhr	Min.
Belgien	. 11	-	Ägypten			÷	9		Q.	Ę	13	-
Bulgarien	. 13	-	Argentinien								6	43
Dänemark		-				×					6	28
Frankreich	. 11	-	Brasilien .				-	-			8	07
Griechenland	. 12	35	Chile		2		3				6	17
Groß-Britannien		777	China									-
Italien			Columbien								6	03
Jugoslawien	. 12	market .	Cuba								5	31
Luxemburg		-	Ecuador									46
Niederlande		20	Guatemala								4	58
Norwegen	. 12		Indien	-	8	8	1	- 2			16	30
Österreich			Indonesien		14	4	4			- 0	19	-
Portugal		-										30
Rumänien	. 13		Iran Jamaica		3						6	-
Rußland (europäisch).			Japan									-
Schweden	. 12	-	Korea								19	30
Schweiz	. 12	-	Marokko .								11	-
Spanien		-	Mexiko		0.00	100					4	24
Tschechoslowakei		-										15
Tiirkei	. 12	57	Panama .									42
			Paraguay .		14	4					7	10
			Peru .									51
Außer-Europa	Uhr	Min.	Philippinen	5	83			- 3	6		19	-
Australien - Westen	. 19											_
— Mitte	. 20	30	Tunis.									1000
	. 21	_	Uruguay .								7	15

Vereinigte Staaten von Nordamerika

Atlantic-Time				000				98.		301		-		7	
Eastern-Standard-Time (New York) .						10	10		10				6	-
Central-Time (Chicago, Galveston)		50	38	*	40	43	34			90	40		100	5	
Mountain-Time (Denver)			0.0		262	80		540	300	(45)	+1		200	4	-
Mountain-Time (Denver) Pacific-Time (San Francisco)				*					ì					3	

Uhr Min.

Zahlentafel 76 Potenzen, Wurzeln, reziproke Werte, Kreisumfänge, Kreisinhalte

n	n^2	n ³	√n	³ / _n −	1000 n	πn	πn ² 4
1 2 3 4 5 6 7 8 9	1 4 9 16 25 36 49 64 81 100	1 8 27 64 125 216 343 512 729 1000	1,0000 1,4142 1,7321 2,0000 2,2361 2,4495 2,6458 2,8284 3,0000 3,1623	1,0000 1,2599 1,4422 1,5874 1,7100 1,8171 1,9129 2,0000 2,0801 2,1544	1000,000 500,000 333,333 250,000 200,200 166,667 142,857 125,000 111,111 100,000	3,142 6,283 9,425 12,566 15,708 18,850 21,991 25,133 28,274 31,416	0.7854 3,1416 7,0686 12,5664 19,6350 28,2743 38,4845 50,2655 63,6173 78,5398
11 12 13 14 15 16 17 18 19 20	1 21 1 44 1 69 1 96 2 25 2 56 2 89 3 24 3 61 4 00	1331 1728 2197 2744 3375 4096 4913 5832 6859 8000	3,3166 3,4641 3,6056 3,7417 3,8730 4,0000 4,1231 4 2426 4,3589 4,4721	2.2240 2.2894 2.3513 2,4101 2,4662 2,5198 2,5713 2,66207 2,6684 2,7144	90,9091 83,3333 76,9231 71,4286 66,6667 62,5000 58,8235 55,5556 52,6316 50,0000	34,558 37,699 40,841 43,982 47,124 50,265 53,407 56,549 59,690 62,832	95,0332 113,097 132,732 153,938 176,716 201,062 226,980 254,469 283,529 314,159
21 22 23 24 25 26 27 28 29	4 41 4 84 5 29 5 76 6 25 6 76 7 29 7 84 900	9261 10648 12167 13824 15625 17576 19683 21952 24389 27000	4,5826 4,6904 4,7958 4,8990 5,0000 5,0990 5,1962 5,2915 5,3852 5,4772	2,7589 2,8020 2,8439 2,8845 2,9240 2,9625 3,0000 3,0366 3,0723 3,1072	47,6190 45,4545 43,4783 41,6667 40,0000 38,4615 37,0370 35,7143 34,4828 33,3333	65,973 69,115 72,257 75,398 78,540 81,681 84,823 87,965 91,106 94,248	346 361 380,133 415,476 452,389 490,874 530,929 572,555 615,752 660,520 706,858
31 32 33 34 35 36 37 38 39	961 1024 1089 1156 1225 1296 1369 1444 1521 1600	29791 32768 35937 39304 42875 46656 50653 54872 59319 64000	5,5678 5,6569 5,7446 5,8310 5,9161 6,0000 6,0828 6,1644 6,2450 6,3246	3,1414 3,1748 3,2075 3,2396 3,2711 3,3019 3,3322 3,3620 3,3912 3,4200	32,2581 31,2500 30,3030 29,4118 28,5714 27,7778 27,0270 26,3158 25,6410 25,0000	97,389 100,531 103,673 106,814 109,956 113,097 116,239 119,381 122,522 125,66	754,768 804,248 855,299 907,920 962,113 1017,88 1075,21 1134,11 1194,59 1256,64
41 42 43 44 45 46 47 48 49 50	1681 1764 1849 1936 2025 2116 2209 2304 2401 2500	68921 74088 79507 85184 91125 97336 103823 110592 117649 125000	6,4031 6,4807 6,5574 6,6332 6,7082 6,7823 6,8557 6,9282 7,0000 7,0711	3,4482 3,4760 3,5034 3,5303 3,5569 3,5830 3,6088 3,6342 3,6593 3,6840	24,3902 23,8095 23,2558 22,2773 22,2222 21,7391 21,2766 20,8333 20,4082 20,0000	128,81 131,95 135,09 138,23 141,37 144,51 147,65 150,80 153,94 157,08	1320,25 1385,44 1452,20 1520,53 1590,43 1661,90 1734,94 1809,56 1885,74 1963,50

n	n^2	n³	√n	3 n	1000 n	πn	rn² 4
51 52 53 54 55 56 57 58 59	2601 2704 2809 2916 3025 3136 3249 3364 3481 3600	132 651 140 608 148 77 157 464 166 375 175 616 185 193 195 112 205 379 216 000	7,1414 7,2111 7,2801 7,3485 7,4162 7,4833 7,5498 7,6158 7,6811 7,7460	3,7084 3,7325 3,7563 3,7798 3,8030 3,8259 3,8485 3,8709 3,8930 3,9149	19,6078 19,2308 18,8679 18,5185 18,1318 17,8571 17,5439 17,2414 16,9492 16,6667	160,22 163,36 166,50 169,65 172,79 175,93 179,07 182,21 185,35 188,50	2042,82 21 23,72 2206,18 2290,22 2375,83 24 63,07 25 51,76 26 42,08 27 33,97 2827,43
61 62 63 64 65 66 67 68 69 70	37 21 38 44 39 69 40 96 42 25 43 56 44 89 46 24 47 61 49 00	226981 238328 250047 262144 274625 287496 300763 314432 328509 343000	7.8102 7.8740 7.9373 8,0000 8,0623 8,1240 8,1854 8,2462 8,3666 8,3666	3,9365 3,9579 3,9791 4,0000 4,0207 4,0412 4,0615 4,0817 4,1016 4,1213	16,3934 16,1290 15,8730 15,6250 15,3846 15,1315 14,9254 14,7059 14,4928 14,2857	191,64 194,78 197,92 201,06 204,20 207,35 210,49 213,63 216,77 219,91	2922,4' 3019,0' 3117,2' 3216,9' 3318,3' 3421,1' 3525,6' 3631,6' 3739,2' 3848,4'
71 72 73 74 75 76 77 78 79 80	5041 5184 5329 5476 5625 5776 5929 6084 6241 6400	357911 373248 389017 405224 421875 438976 456533 474552 493039 512000	8,4261 8,4853 8,5440 8,6023 8,6603 8,7178 8,7750 8,8318 8,8882 8,9443	4,1408 4,1602 4,1793 4,1983 4,2172 4,2358 4,2543 4,2727 4,2908 4,3089	14,0845 13,8889 13,6986 13,5135 13,3333 13,1579 12,9870 12,8205 12,6582 12,5000	223,05 226,19 229,34 232,48 235,62 238,76 241,90 245,04 248,19 251,33	3959,1 4071,5 4185,3 4300,8 4417,8 4536,4 4656,6 4778,3 4901,6 5026,5
81 82 83 84 85 86 87 88 89	6561 6724 6889 7056 7225 7396 7569 7744 7921 8100	531441 551368 571787 592704 614125 636056 658503 681472 704969 729000	9,0000 9,0554 9,1104 9,1652 9,2195 9,2736 9,3274 9,3808 9,4340 9,4868	4,3267 4,3445 4,3621 4,3795 4,3968 4,4140 4,4310 4,4480 4,4647 4,4814	12,3457 12,1951 12,0482 11,9048 11,7647 11,6279 11,4943 11,3636 11,2360 11,1111	254,47 257,61 260,75 263,89 267,04 270,18 273,32 276,46 279,60 282,74	51 53,0 5281,0 5410,6 5541,7 5674,5 5808,8 5944,6 6082,1 6221,1 6361,7
91 92 93 94 95 96 97 98 99	8281 8464 8649 8836 9025 9216 9409 9604 9801 10000	753571 778 688 804357 830584 857375 884736 912673 941192 970299 1000000	9,5394 9,5917 9,6437 9,6954 9,7468 9,7980 9,8489 9,8489 9,8995 9,9499 10,0000	4,4979 4,5144 4,5307 4,5468 4,5629 4,5789 4,5947 4,6104 4,6261 4,6416	10,9890 10,8696 10,7527 10,6383 10,5263 10,4167 10,3093 10,2041 10,1010 10,0000	285,88 289,03 292,17 295,31 298,45 301,69 304,73 307,88 311,02 314,16	6503,8 66 47,6 67 92,9 69 39,7 70 88,2 72 38,2 73 89,8 75 42,9 76 97,6 78 53,9

n	n²	n ³	Vn	V 11	1000	πn	$\frac{\pi n^2}{4}$
101 102 103 104 105 106 107 108 109 110	10201 10404 10609 10816 11025 11236 11449 11664 11881 12100	1030301 1061208 1092727 1124864 1157625 1191016 1225043 1259712 1295029 1331000	10,0499 10,0995 10,1489 10,1980 10,2470 10,2956 10,3441 10 3923 10,4403 10,4881	4,6570 4,6723 4,6875 4,7027 4,7177 4,7326 4,7475 4,7622 4,7769 4,7914	9,90099 9,80392 9,70874 9,61538 9,52381 9,43396 9,34579 9,25926 9,17431 9,09091	317,30 320,44 323,58 326,73 329,87 333,01 336,15 339,23 342,43 345,58	8171,28 8332,29
111 112 113 114 115 116 117 118 119	12321 12544 12769 12996 13225 13456 13689 13924 14161 14400	1367631 1404928 1442897 1481544 1520875 1560896 1601613 1643032 1685159 1728000	10,5357 10,5830 10,6301 10,6771 10,7238 10,7703 10,8167 10,8628 10,9087 10,9545	4,8059 4,8203 4,8346 4,8488 4,8629 4,8770 4,8910 4,9049 4,9187 4,9324	9,00901 8,92857 8,84956 8,77193 8,69565 8,62069 8,54701 8,47458 8,40336 8,33333	348,72 351,86 355,00 358,14 361,28 364,42 367,57 370,71 373,85 376,99	9676,89 9852,03 10028,7 10207,0 10386,9 10568,3 10751,3 10935,9 11122,0 11309,7
121 122 123 124 125 126 127 128 129 130	14641 14884 15129 15376 15625 15876 16129 16384 16641 16900	$\begin{array}{c} 1771561 \\ 1815848 \\ 1860867 \\ 1906624 \\ 1953125 \\ 2000376 \\ 2048383 \\ 2097152 \\ 2146689 \\ 2197000 \end{array}$	11,0000 11,0454 11,0905 11,1355 11,1803 11,2250 11,2694 11,3137 11,3578 11,4018	4,9461 4,9597 4,9732 4,9866 5,0000 5,0133 5,0265 5.0397 5,0528 5,0658	8,26446 8,19672 8,13008 8,06452 8,00000 7,93651 7,87402 7,81250 7,75194 7,69231	380,13 383,27 386,42 389,56 392,70 395,84 398,98 402,12 405,27 408,41	114 99,0 11689,9 11882,3 120 76,3 12271,8 124 69,0 126 67,7 12868,0 130 69,8 13273,2
131 132 133 134 135 136 137 138 139 140	17161 17424 17689 17956 18225 18496 18769 19044 19321 19600	2248091 2299968 2352637 2406104 2460375 2515456 2571353 2628072 2685619 2744000	11,4455 11,4891 11,5326 11,5758 11,6190 11,6619 11,7047 11,7473 11,7898 11,8322	5,0788 5,0916 5,1045 5,1172 5,1172 5,1299 5,1426 5,1551 5,1676 5,1801 5,1925	7,63359 7,57576 7,51880 7,46269 7,40741 7,35294 7,29927 7,24638 7,19424 7,14286	411,55 414,69 417,83 420,97 424,12 427,26 430,40 433,54 436,68 439,82	13478,2 13684,8 13892,9 14102,6 14313,9 14526,7 14741,1 14957,1 15174,7 15393,8
141 142 143 144 145 146 147 148 149 150	19881 20164 20449 20736 21025 21316 21609 21904 22201 22500	2803221 2863288 2924207 2985984 3048625 3112136 3176523 3241792 3307949 3375000	11,8743 11,9164 11,9583 12,0000 12,0416 12,0830 12,1244 12,1655 12,2066 12,2474	5,2048 5,2171 5,2293 5,2415 5,2536 5,2656 5,2776 5,2896 5,3015 5,3133	7,09220 7,04225 6,99301 6,94444 6,89655 6,84932 6,80272 6,75676 6,71141 6,66667		1 56 14.5 1 58 36,8 1 60 60,6 1 62 86,0 1 65 13,0 1 67 41,5 1 69 71,7 1 72 03,4 1 74 36,6 1 76 71,5

n	n²	n³] n) n	1000 n	лn	$\frac{\pi n^2}{4}$
151 152 153 154 155 156 157 158 159 160	22801 23104 23409 23716 24025 24336 24649 24964 25281 25600	$egin{array}{c} 3442951 \\ 3511808 \\ 3581577 \\ 3652264 \\ 3723875 \\ 3796416 \\ 3869893 \\ 3944312 \\ 4019679 \\ 4096000 \\ \hline \end{array}$	12,2882 12,3288 12,3693 12,4097 12,4499 12,5300 12,5300 12,5698 12,6095 12,6491	5,3251 5,3368 5,3485 5,3601 5,3717 5,3832 5,3947 5,4061 5,4175 5,4288	6,62252 6,57895 6,53595 6,49351 6,45161 6,41026 6,36943 6,32911 6,28931 6,25000	474,38 477,52 480,66 483,81 486,95 490,09 493,23 496,37 499,51 502,65	17907,9 18145,8 18385,4 18626,5 18869,2 19113,4 19359,3 1966,7 19855,7 20106,2
161 162 163 164 165 166 167 168 169	25921 26244 26569 26896 27225 27556 27889 28224 28561 28900	4173281 4251528 4330747 4410944 4492125 4574296 4657463 4741632 4826809 4913000	12,6886 12,7279 12,7671 12,8062 12,8452 12,8841 12,9228 12,9615 13,0000 13,0384	5,4401 5,4514 5,4626 5,4737 5,4848 5,4959 5,5069 5,5178 5,5288 5,5397	6,21118 6,17284 6,13497 6,09756 6,06061 6,02410 5,98802 5,95238 5,91716 5,88235	505,80 508,94 512,08 515,22 518,36 521,50 524,65 527,79 530,93 534,07	203 58,3 206 12,0 208 67,2 211 24,1 213 82,5 216 42,4 21904,0 221 67,1 224 31,8 226 98,0
171 172 173 174 175 176 177 178 179 180	29241 29584 29929 30276 30625 30976 31329 31684 32041 32400	5000211 5088448 5177717 5268024 5359375 5451776 5545233 56397752 5735339 5832000	13,0767 13,1149 13,1529 13,1909 13,2288 13,2665 13,3041 13,3417 13,3791 13,4164	5,5505 5,5613 5,5721 5,5828 5,5934 5,6041 5,6147 5,6252 5,6357 5,6462	5,84795 5,81395 5,78035 5,74713 5,71429 5,68182 5,64972 5,61798 5,58659 5,55556	537,21 540,35 543,50 546,64 549,78 552,92 556,06 559,20 562,35 565,49	22965,8 23235,2 23506,2 23778,7 24052,8 24328,5 24605,7 24884,6 25164,6
181 182 183 184 185 186 187 188 189	327 61 33124 33489 33856 34225 34596 34969 35344 35721 36100	$\begin{array}{c} 5929741 \\ 6028568 \\ 6128487 \\ 6229504 \\ 6331625 \\ 6434856 \\ 6539203 \\ 6644672 \\ 6751269 \\ 6859000 \end{array}$	13,4536 13,4907 13,5277 13,5647 13,6015 13,6382 13,6748 13,7113 13,7477 13,7840	5,6567 5,6671 5,6774 5,6877 5,6980 5,7083 5,7185 5,7287 5,7388 5,7489	5,52486 5,49451 5,46448 5,43478 5,40541 5,37634 5,34759 5,31915 5,29101 5,26316	568,63 571,77 574,91 578,05 581,19 584,34 587,48 590,62 593,76 596,90	25730,4 26015,5 26302,2 26590,4 26880,3 27171,6 27464,6 27759,1 28055,2 28352,6
191 192 193 194 195 196 197 198 199 200	36481 36864 37249 37636 38025 38416 38809 39204 39601 40000	$\begin{array}{c} 6967871 \\ 7077888 \\ 7189057 \\ 7301384 \\ 7414875 \\ 7529536 \\ 7645373 \\ 7762392 \\ 7880599 \\ 8000000 \end{array}$	13,8203 13,8564 13,8924 13,9284 13,9642 14,0000 14,0357 14,0712 14,1067 14,1421	5,7590 5,7690 5,77890 5,7890 5,7889 5,8088 5,8186 5,8285 5,8383 5,8480	5,23560 5,20833 5,18135 5,15464 5,12821 5,10204 5,07614 5,05051 5,02513 5,00000	600,04 603,19 606,33 609,47 612,61 615,75 618,89 622,04 625,18 628,32	286 52,1 289 52,9 292 55,3 29 559,2 298 64,8 30171,9 30480,5 30790,7 31102,6 31415,9

n	n²	n³	l l n	l n	1000 n	.7 n	77J1 ²
201	40401	8120601	14,1774	5,8578	4,97512	631,46	31730,9
202	40804	8242408	14,2127	5,8675	4,95050	634,60	32047,4
203	41209	8365427	14,2478	5,8771	4,92611	637,74	32365,5
204	41616	8489664	14,2829	5,8868	4,90196	640,88	32685,1
205	42025	8615125	14,3178	5,8964	4,87805	644,03	33006,4
206	42436	8741816	14,3527	5,9059	4,85437	647,17	33329,2
207	42849	8869743	14,3875	5,9155	4,83092	650,31	33653,5
208	43264	8998912	14,4822	5,9250	4,80769	653,45	33979,5
209	43681	9129329	14,4568	5,9345	4,78469	656,59	34307,0
210	44100	9261000	14,4914	5,9439	4,76190	659,73	34636,1
211 212 213 214 215 216 217 218 219 220	44521 44944 45369 45796 46225 46656 47089 47524 47961 48400	9393 931 9528 128 9663 597 9800344 9938375 10077 696 10 218 313 10360232 10503 459 10648000	14,5258 14,5602 14,5945 14,6287 14,6629 14,7309 14,7648 14,7986 14,8324	5,9533 5,9627 5,9721 5,9814 5,9907 6,0000 6,0092 6,0185 6,0277 6,0368	4,73934 4,71698 4,69484 4,67290 4,65116 4,62963 4,60829 4,58716 4,56621 4,54545	662,88 666,02 669,16 672,30 675,44 678,58 681,73 684,87 688,01 691,15	3 4966,7 3 52 98,9 3 56 32,7 3 59 68,1 3 63 05,0 3 66 43,5 3 69 83,6 3 73 25,3 3 76 68,5 3 80 13,3
221	48841	10793861	14,8661	6,0459	4,52489	694,29	38359,6
222	49284	10941048	14,8997	6,0550	4,50450	697,43	38707,6
223	49729	11089567	14,9332	6,0641	4,48430	700,58	39057,1
224	50176	11239424	14,9666	6,0732	4,46429	703,72	39408,1
225	50625	11390625	15,0000	6,0822	4,44444	706,86	39760,8
226	51076	11543176	15,0333	6,0912	4,42478	710,00	40115,0
227	51529	11697083	15,0665	6,1002	4,40529	713,14	40470,8
228	51984	11852352	15,0997	6,1091	4,38596	716,28	40828,1
229	52441	12008989	15,1327	6,1180	4,36681	719,42	41187,1
230	52900	12167000	15,1658	6,1269	4,34783	722,57	41547,6
231	53361	12326391	15,1987	6,1358	4,32900	725,71	41909,6
232	53824	12487168	15,2315	6,1446	4,31034	728,85	42273,3
233	54289	12649337	15,2643	6,1534	4,29185	731,99	42638,5
234	54756	12812904	15,2971	6,1622	4,27350	735,13	43005,3
235	55225	12977875	15,3297	6,1710	4,25532	738,27	43373,6
236	55696	13144256	15,3623	6,1797	4,23729	741,42	43743,5
237	56169	13312053	15,3948	6,1885	4,21941	744,56	44115,0
238	56644	13481272	15,4272	6,1972	4,20168	747,70	44488,1
239	57121	13651919	15,4596	6,2058	4,18410	750,84	44862,7
240	57600	13824000	15,4919	6,2146	4,16667	753,98	45238,9
241	58081	13 997 521	15,5242	6,2231	4,14938	757,12	45616,7
242	58564	14 172 488	15,5563	6,2317	4,13223	760,27	45996,1
243	59049	14 348 907	15,5885	6,2403	4,11523	763,41	46377,0
244	59536	14 52 6784	15,6205	6,2488	4,09836	766,55	46759,5
245	60025	14 70 6125	15,6525	6,2573	4,08163	769,69	47143,5
246	60516	14 88 6936	15,6544	6,2658	4,06504	772,83	47529,2
247	61009	150 69223	15,7162	6,2743	4,04858	775,97	47916,4
248	61504	15252992	15,7480	6,2828	4,03226	779,11	48305,1
249	62001	15438249	15,7797	6,2912	4,01606	782,26	48695,5
250	62500	15625000	15,8114	6,2996	4,00000	785,40	49087,4

n	n²	n ³	√n	3 n	1000 n	πn	7 n²
251	63001	15813251	15,8430	6,3080	3,98406	788,54	49480,9
252	63504	16003008	15,8745	6,3164	3,96825	791,68	49875,9
253	64009	16194277	15,9060	6,3247	3,95257	794,82	50272,6
254	64516	16387 064	15,9374	6,3330	3,93701	797,96	50670,7
255	65025	16581375	15,9687	6,3413	3,92157	801,11	51070,5
256	65536	16777216	16,0000	6,3496	3,90625	804,25	51471,9
257	66049	16974593	16,0312	6,3579	3,89105	807,39	51874,8
258	66564	17173512	16,0624	6,3661	3,87597	810,53	52279,2
259	67081	17373979	16,0935	6,3743	3,86100	813,67	52685,3
260	67600	17576000	16,1245	6,3825	3,84615	816,81	53092,9
261	68121	17779581	16,1555	6,3907	3,83142	819,96	53502.1
262	68644	17984728	16,1864	6,3988	3,81679	823,10	53912.9
263	69169	18191447	16,2173	6,4070	3,80228	826,24	54325.2
264	69696	18399744	16,2481	6,4151	3,78788	829,38	54739.1
265	70225	18609625	16,2788	6,4232	3,77358	832,52	55154.6
266	70756	18821096	16,3095	6,4312	3,75940	835,66	55571.6
267	71289	19034163	16,3401	6,4393	3,74532	838,81	55990.2
268	71824	19248832	16,3707	6,4473	3,73134	841,95	56410.4
269	72361	19465109	16,4012	6,4553	3,71747	845,09	56832.2
270	72900	19683000	16,4317	6,4633	3,70370	848,23	57255,5
271	73441	19902511	16,4621	6,4713	3,69004	851,37	576 80,4
272	73984	20123648	16,4924	6,4792	3,67647	854,51	58106,9
273	74529	20346417	16,5227	6,4872	3,66300	857,65	58534,9
274	75076	20570824	16,5529	6,4951	3,64964	860,80	58964,6
275	75625	20796875	16,5831	6,5030	3,63636	863,94	593 95,7
276	76176	21024576	16,6132	6,5108	3,62319	867,08	598 28,5
277	76729	21253933	16,6433	6,5187	3,61011	870,22	60 262,8
278	77284	21484952	16,6733	6,5265	3,59712	873,36	60 698,7
279	77841	21717639	16,7033	6,5343	3,58423	876,50	611 36,2
280	78400	21952000	16,7033	6,5421	3,57143	879,65	615 75,2
281	789 61	22188041	16,7631	6,5499	3,55872	882,79	62015,8
282	79524	22425768	16,7929	6,5577	3,54610	885,93	62458,0
283	80089	22665187	16,8226	6,5654	3,53357	889,07	62901,8
284	80656	22906304	16,8523	6,5731	3,52113	892,21	63347,1
285	81225	23149125	16,8819	6,5808	3,50877	895,35	63794,0
286	81796	23393656	16,9115	6,5885	3,49650	898,50	64242,4
287	82369	23639903	16,9411	6,5962	3,48432	901,64	64692,5
288	82344	23887872	16,9706	6,6039	3,47222	904,78	65144,1
289	83521	24137569	17,0000	6,6115	3,46021	907,92	65597,2
290	84100	24389000	17,0294	6,6191	3,44828	911,06	66052,0
291	84681	24642171	17,0587	6,6267	3,43643	914,20	66508,3
292	85264	24897088	17,0880	6,6343	3,42466	917,35	66966,2
293	85849	25153757	17,1172	6,6419	3,41297	920,49	67425,6
294	86436	25412184	17,1464	6,6494	3,40136	923,63	67886,7
295	87025	25672375	17,1756	6,6569	3,38983	926,77	68349,3
296	87616	25934336	17,2047	6,6644	3,37838	929,91	68813,4
297	88209	26198073	17,2337	6,6719	3,36700	933,05	69279,2
298	88804	26463592	17,2627	6,6794	3,35570	936,19	69746,5
299	89401	26730899	17,2916	6,6869	3,34448	939,34	70215,4
300	90000	27000000	17,3205	6,6943	3,33333	942,48	70685,8

n	112	n³] n) n	1000 n	zn	7n ²
301	90601	27270901	17.3494	6,7018	3,32226	945,62	71157,9
302	91204	27543608	17,3781	6,7092	3,31126	948,76	71631,5
303	91809	27818127	17,4069	6,7166	3,30033	951,90	72106,6
304	92416	28094464	17,4356	6,7240	3,28947	955,04	72583,4
305	93025	28372625	17,4642	6,7313	3,27869	958,19	73061,7
306	93636	28652616	17,4929	6,7387	3,26797	961,33	73541,5
307	94249	28934443	17,5214	6,7460	3,25733	964,47	74023,0
308	94864	29218112	17,5499	6,7533	3,24675	967,61	74506,0
309	95481	29503629	17,5784	6,7606	3,23625	970,75	74990,6
310	96100	29791000	17,6068	6,7679	3,22581	973,89	75476,8
311	$\begin{array}{c} 96721 \\ 97344 \\ 97969 \\ 98596 \\ 99225 \\ 99856 \\ 100489 \\ 101124 \\ 101761 \\ 102400 \end{array}$	30080231	17,6352	6,7752	3,21543	977,04	75964,5
312		30371328	17,6635	6,7824	3,20513	980,18	76453,8
313		30664297	17,6918	6,7897	3,19489	983,32	76944,7
314		30959144	17,7200	6,7969	3,18471	986,46	77437,1
315		31255875	17,7482	6,8041	3,17460	989,60	77931,1
316		31554496	17,7764	6,8113	3,16456	992,74	78426,7
317		31855013	17,8045	6,8185	3,15457	995,88	78923,9
318		32157452	17,8326	6,8256	3,14465	999,03	79422,6
319		32461759	17,8606	6,8328	3,13480	1002,2	79922,9
320		32768000	17,8885	6,8399	3,12500	1005,3	80424,8
321 322 323 324 325 326 327 328 329 330	$\begin{array}{c} 103041\\ 103684\\ 104329\\ 104976\\ 105625\\ 106276\\ 106929\\ 107584\\ 108241\\ 108900 \end{array}$	33076161 33386248 33698267 34012224 34328125 34645976 34965783 35287552 35611289 35937000	17,9165 17,9444 17,9722 18,0000 18,0278 18,0555 18,0831 18,1108 18,1384 18,1659	6,8470 6,8541 6,8612 6,8683 6,8753 6,8824 6,8894 6,9034 6,9104	3,11526 3,10559 3,09598 3,08642 3,07692 3,06748 3,05810 3,04878 3,03951 3,03030	1008,5 1011,6 1014,7 1017,9 1021,0 1024,2 1027,3 1030,4 1033,6 1036,7	80928,2 81433,2 81939,8 82448,0 82957,7 83469,0 83981,8 84496,3 85012,3 85529,9
331 332 333 334 335 336 337 338 339 340	109561 110224 110889 111556 112225 112896 113569 114244 114921 115600	36264691 36594368 36926037 37259704 37595375 37933056 38272753 38614472 38958219 39304000	18,1934 18,2209 18,2483 18,2757 18,3030 18,3376 18,3848 18,4120 18,4391	6,9174 6,9244 6,9313 6,9382 6,9451 6,9521 6,9589 6,9658 6,9727 6,9795	3,02115 3,01205 3,00300 2,99401 2,98507 2,97619 2,96736 2,95858 2,94985 2,94118	1039,9 1043,0 1046,2 1049,3 1052,4 1055,6 1058,7 1061,9 1065,0 1068,1	86049,0 86569,7 87092,0 87615,9 88141,3 88668,3 89196,9 89727,0 90258,7
341	116281	39651 821	18,4662	6,9864	2,93255	1071,3	91326,9
342	116964	40001 688	18,4932	6,9932	2,92398	1074,4	91863,3
343	117649	40353607	18,5203	7,0000	2,91545	1077,6	92401,3
344	118336	40 707 584	18,5472	7,0068	2,90698	1080,7	92940,5
345	119025	41063625	18,5742	7,0136	2,89855	1083,8	93482,0
346	119716	41 421736	18,6011	7,0203	2,89017	1087,0	94024,7
347	120409	41781 923	18,6279	7,0271	2,88184	1090,1	94569,0
348	121104	42144 192	18,6548	7,0338	2,87356	1093,3	95114,9
349	121801	42508549	18,6815	7,0406	2,86533	1096,4	95662,3
350	122500	42875000	18,7083	7,0473	2,85714	1099,6	96211,3

n	112	n³	√n	∛ n	1000 n	πn	π11 ²
351	123201	43243551	18,7350	7,0540	2,84900	1102,7	96761,8
352	123904	43614208	18,7617	7,0607	2,84091	1105,8	97314,0
353	124609	43986977	18,7883	7,0674	2,83286	1109,0	97867,7
354	125316	44361864	18,8149	7,0740	2,82486	1112,1	98423,0
355	126025	44738875	18,8414	7,0807	2,81690	1115,3	98979,8
356	126736	45118016	18,8680	7,0873	2,80899	1118,4	99538,2
357	127449	45499293	18,8944	7,0940	2,80112	1121,5	100098
358	128164	45882712	18,9209	7,1006	2,79330	1124,7	100660
359	128881	46268279	18,9473	7,1072	2,78552	1127,8	101223
360	129600	46656000	18,9737	7,1138	2,77778	1131,0	101788
361	130321	47045881	19,0000	7,1204	2,77008	1134,1	10 23 54
362	131044	47437928	19,0263	7,1269	2,76243	1137,3	10 29 22
363	131769	47832147	19,0526	7,1335	2,75482	1140,4	10 3 4 91
364	132496	48228544	19,0788	7,1400	2,74725	1143,5	10 4 062
365	133225	48627125	19,1050	7,1466	2,73973	1146,7	10 4 63
366	133956	49027896	19,1311	7,1531	2,73224	1149,8	10 5 2 09
367	134689	49430863	19,1572	7,1596	2,72480	1153,0	10 5 7 8
368	135424	49836032	19,1833	7,1661	2,71739	1156,1	10 6 3 62
369	136161	50243409	19,2094	7,1726	2,71003	1159,2	10 6 9 41
370	136900	50653000	19,2354	7,1791	2,70270	1162,4	10 7 5 2 1
371	137641	51064811	19,2614	7,1855	2,69542	1165,5	108103
372	138384	51478848	19,2873	7,1920	2,68817	1168,7	108683
373	139129	51895117	19,3132	7,1984	2,68097	1171,8	10927:
374	139876	52313624	19,3391	7,2048	2,67380	1175,0	109858
375	140625	52734375	19,3649	7,2112	2,66667	1178,1	110447
376	141376	53157376	19,3907	7,2177	2,65957	1181,2	111036
377	142129	53582633	19,4165	7,2240	2,65252	1184,4	111628
378	142884	54010152	19,4422	7,2304	2,64550	1187,5	11222
379	143641	54439939	19,4679	7,2368	2,63852	1190,7	112818
380	144400	54872000	19,4936	7,2432	2,63158	1193,8	11341
381	14 51 61	55306341	19,5192	7,2495	2,62467	1196,9	114009
382	14 59 24	55742968	19,5448	7,2558	2,61780	1200,1	114608
383	14 66 89	56181887	19,5704	7,2622	2,61097	1203,2	115209
384	14 74 56	56623104	19,5959	7,2685	2,60417	1206,4	115812
385	14 82 25	57066625	19,6214	7,2748	2,59740	1209,5	116416
386	14 89 96	57512456	19,6469	7,2811	2,59067	1212,7	117027
387	14 97 69	57960603	19,6723	7,2874	2,58398	1215,8	117628
388	15 0 5 44	58411072	19,6977	7,2936	2,57732	1218,9	118237
389	15 13 21	58863869	19,7231	7,2999	2,57069	1222,1	118847
390	15 21 00	59319000	19,7484	7,3061	2,56410	1225,2	119459
391 392 393 394 395 396 397 398 399 400	15 2881 15 3664 15 44 49 15 52 36 15 60 25 15 6816 15 76 09 15 84 04 15 92 01 16 00 00	59776471 60236288 60698457 61162984 61629875 62099136 62570773 63044792 63521199 64000000	19,7737 19,7990 19,8242 19,8494 19,8746 19,8997 19,9249 19,9499 19,9750 20,0000	7,3124 7,3186 7,3248 7,3310 7,3372 7,3434 7,3496 7,3558 7,3619 7,3681	2,55754 2,55754 2,55102 2,54453 2,53807 2,53165 2,52525 2,51889 2,51256 2,50627 2,50000	1228,4 1231,5 1234,6 1237,8 1240,9 1244,1 1247,2 1250,4 1253,5 1256,6	120075 120686 121304 121925 122542 123163 123786 124410 125036 125664

n	n²	n^3	√n	3 n	1000 n	πn	$\frac{\pi n^2}{4}$
401	160801	64481201	20,0250	7,3742	2,49377	1259,8	126293
402	161604	64964808	20,0499	7,3803	2,48756	1262,9	126923
403	162409	65450827	20,0749	7,3864	2,48139	1266,1	127556
404	163216	65939264	20,0998	7,3925	2,47525	1269,2	128190
405	164025	66430125	20,1246	7,3986	2,46914	1272,3	128825
406	164836	66923416	20,1494	7,4047	2,46305	1275,5	129462
407	165649	67419143	20,1742	7,4108	2,45709	1278,6	130100
408	166464	67917312	20,1990	7,4169	2,45098	1281,8	130741
409	167281	68417929	20,2237	7,4229	2,44499	1284,9	131382
410	168100	68921000	20,2485	7,4290	2,43902	1288,1	132025
411	168921	69426531	20,2731	7,4350	2,43309	1291,2	132670
412	169744	69934528	20,2978	7,4410	2,42718	1294,3	133317
413	170569	70444997	20,3224	7,4470	2,42131	1297,5	133965
414	171396	70957944	20,3470	7,4530	2,41546	1300,6	134614
415	172225	71473375	20,3715	7,4590	2,40964	1303,8	135265
416	173056	71991296	20,3961	7,4650	2,40385	1306,9	135918
417	173889	72511713	20,4206	7,4710	2,39808	1310,0	136572
418	174724	73034632	20,4450	7,4770	2,39234	1313,2	137228
419	175561	73560059	20,4695	7,4829	2,38663	1316,3	137885
420	176400	74088000	20,4939	7,4889	2,38095	1319,5	138544
421	177241	74618 461	20,5183	7,4948	2,37530	1322,6	13 9205
422	178084	75151 448	20,5426	7,5007	2,36967	1325,8	13 9867
423	178929	75686967	20,5670	7,5067	2,36407	1328,9	14 0531
424	179776	76225024	20,5913	7,5126	2,35849	1332,0	14 11 96
425	180625	76765625	20,6155	7,5185	2,35294	1335,2	14 18 63
426	181476	77308776	20,6398	7,5244	2,34742	1338,3	14 2531
427	182329	77854 483	20,6640	7,5302	2,34192	1341,5	14 32 01
428	183184	78402752	20,6882	7,5361	2,33645	1344,6	14 38 72
429	184041	78953 589	20,7123	7,5420	2,33100	1347,7	14 45 45
430	184900	79 507000	20,7364	7,5478	2,32558	1350,9	14 5 220
431 432 433 434 435 436 437 438 439 440	185761 186624 187489 188356 189225 190096 190969 191844 192721 193600	80062991 80621568 81182737 81746504 82312875 82881856 83453453 84027672 84604519 85184000	20,7605 20,7846 20,8087 20,8327 20,8567 20,8806 20,9045 20,9284 20,9523 20,9762	7,5537 7,5595 7,5654 7,5712 7,5770 7,5828 7,5886 7,5944 7,6001 7,6059	2,32019 2,31481 2,30947 2,30415 2,29885 2,29358 2,28833 2,28311 2,27790 2,27273	1354,0 1357,2 1360,3 1363,5 1366,6 1369,7 1372,9 1376,0 1379,2 1382,3	145896 146574 147254 147934 148617 149987 150674 151363 152053
441	194481	85766121	21,0000	7,6117	2,26757	1385,4	152745
442	195364	86350888	21,0238	7,6174	2,26244	1388,6	153439
443	196249	86938307	21,0476	7,6232	2,25734	1391,7	154134
444	197136	87528384	21,0476	7,6289	2,25225	1394,9	154830
445	198025	88121125	21,0950	7,6346	2,24719	1398,0	155528
446	198916	88716536	21,1187	7,6403	2,24215	1401,2	156228
447	199809	89314623	21,1424	7,6460	2,23714	1404,3	156930
448	200704	89915392	21,1660	7,6517	2,23214	1407,4	157633
449	201601	90518849	21,1896	7,6574	2,22717	1410,6	158337
450	202500	91125000	21,2132	7,6631	2,22222	1413,7	159043

n	n²	n³	l'n] n	1000 n	πn	4 2 1
451 452 453 454 455 456 457 458 460	203401 204304 205209 206116 207025 207936 208849 209764 210681 211600	$\begin{array}{c} 91733851 \\ 92345408 \\ 92959677 \\ 93576664 \\ 94196375 \\ 94818816 \\ 95443993 \\ 96071912 \\ 96702579 \\ 97336000 \end{array}$	21,2368 21,2603 21,2838 21,3307 21,3307 21,3542 21,3776 21,4009 21,4243 21,4476	7,6688 7,6744 7,6801 7,6857 7,6914 7,6970 7,7026 7,7082 7,7138 7,7194	2.21729 2.21239 2.20751 2.20264 2.19780 2.19298 2.18818 2.18841 2.17865 2.17391	1416,9 1420,0 1423,1 1426,3 1429,4 1432,6 1435,7 1438,8 1442,0 1445,1	159751 160460 161171 161883 162597 163313 164030 164748 165468 166190
461	21 2521	97972181	21,4709	7,7250	2,16920	1448,3	166914
462	21 3444	98611128	21,4942	7,7306	2,16450	1451,4	167639
463	21 43 69	99252847	21,5174	7,7362	2,15983	1454,6	168365
464	21 52 96	99897344	21,5407	7,7418	2,15517	1457,7	169093
465	21 62 25	100544625	21,5639	7,7473	2,15054	1460,8	16983
466	21 71 56	101194696	21,5870	7,7529	2,14592	1464,0	170554
467	21 80 89	101847563	21,6102	7,7584	2,14133	1467,1	171287
468	21 90 24	102503232	21,6333	7,7639	2,13675	1470,3	172021
469	21 99 61	103161709	21,6564	7,7695	2,13220	1473,4	172757
470	22 0 900	103823000	21,6795	7,7750	2,12766	1476,5	173494
471 472 473 474 475 476 477 478 479 480	221841 222784 223729 224676 225625 226576 227529 228484 229441 230400	104 487111 105154048 105823817 106496424 107171.875 107850176 108531333 109215352 109902239 110592000	21,7025 21,7256 21,7486 21,7715 21,7945 21,8174 21,8403 21,8632 21,8861 21,9089	7,7805 7,7860 7,7915 7,7970 7,8025 7,8079 7,8134 7,8188 7,8243 7,8297	2,12314 2,11864 2,11416 2,10970 2,10526 2,10084 2,09644 2,09205 2,08768 2,08333	1479,7 1482,8 1486,0 1489,1 1492,3 1495,4 1498,5 1501,7 1504,8 1508,0	17 42 34 17 49 74 17 57 16 17 64 60 17 72 52 17 87 01 17 94 51 180 203 180 9 56
481	23 13 61	111284641	21,9317	7,8352	2,07900	1511,1	181711
482	232324	111980168	21,9545	7,8406	2,07469	1514,2	182467
483	233289	112678587	21,9773	7,8460	2,07039	1517,4	183225
484	234256	113379904	22,0000	7,8514	2,06612	1520,5	183984
485	235225	114088125	22,0227	7,8568	2,06186	1523,7	184745
486	236196	114791256	22,0454	7,8622	2,05761	1526,8	185508
487	237169	115501303	22,0681	7,8676	2,05339	1530,0	186272
488	238144	116214272	22,0907	7,8730	2,04918	1533,1	187038
489	239121	116930169	22,1133	7,8784	2,04499	1536,2	187805
490	240100	117649000	22,1359	7,8837	2,04082	1539,4	188574
491	241081	118370771	22,1585	7,8891	2,03666	1542,5	18 93 45
492	242064	119095488	22,1811	7,8944	2,03252	1545,7	190117
493	243049	119823157	22,2036	7,8998	2,02840	1548,8	1908 90
494	244036	120553784	22,2261	7,9051	2,02429	1551,9	1916 65
495	245025	121287375	22,2486	7,9105	2,02020	1555,1	1924 21
496	246016	122023936	22,2711	7,9158	2,01613	1558,2	1932 21
497	247009	122763473	22,2935	7,9211	2,01207	1561,4	1940 00
498	248004	123505 992	22,3159	7,9264	2,00803	1564,5	1947 82
499	249001	124251499	22,3383	7, 9317	2,00401	1567,7	1955 65
50 0	250000	125000000	22,3607	7,9370	2,00000	1570,8	1963 50

n	li²	n³	√ n	l n	1000 n	πn	$\frac{\pi n^2}{4}$
501 502 503 504 505 506 507 508 509 510	251001 252004 253009 254016 255025 256036 257049 258064 259081 260100	125751501 126506008 127263527 128024064 128787625 129554216 130328843 131096512 131872229 132651000	22,3830 22,4054 22,4277 22,4499 22,4722 22,4944 22,5167 22,5389 22,5610 22,5832	7,9423 7,9476 7,9528 7,9581 7,9634 7,9739 7,9791 7,9843 7,9896	1,99601 1,99203 1,98807 1,98413 1,98•20 1,97628 1,97239 1,96850 1,96464 1,96078	1573,9 1577,1 1580,2 1583,4 1586,5 1589,6 1592,8 1595,9 1599,1 1602,2	197136 197923 198713 199504 200296 201090 201886 202683 203482 204282
511	261121	133 432 831	22,6053	7,9948	1,95695	1605,4	205084
512	262144	134217728	22,6274	8,0000	1,95312	1608,5	205887
513	263169	135005697	22,6495	8,0052	1,94932	1611,6	206692
514	264196	135796744	22,6716	8,0104	1,94553	1614,8	207499
515	265225	136559875	22,6936	8,0156	1,94175	1617,9	208307
516	266256	137388096	22,7156	8,0208	1,93798	1621,1	20917
517	267289	138188413	22,7376	8,0260	1,93424	1624,2	209928
518	268324	138991832	22,7376	8,0311	1,93050	1627,3	210741
519	269361	139798359	22,7816	8,0363	1,92678	1630,5	211556
520	270400	140608000	22,8035	8,0415	1,92308	1633,6	212372
521	271441	141 420761	22,8254	8,0466	1,91939	1636,8	21 31 89
522	272484	142236648	22,8478	8,0517	1,91571	1639,9	21 40 08
523	273529	143055667	22,8692	8,0569	1,91205	1643,1	21 48 29
524	274576	143877824	22,8910	8,0620	1,90840	1646,2	21 56 51
525	275625	144703125	22,9129	8,0671	1,90476	1649,3	21 64 75
526	276676	145 531 576	22,9347	8,0723	1,90114	1652,5	21 73 01
527	277729	146363183	22,9565	8,0774	1,89753	1655.6	21 81 28
528	278784	147 197 952	22,9783	8,0825	1,89394	1658,8	21 89 56
529	279841	148035889	23,0000	8,0876	1,89036	1661,9	21 97 87
530	280900	148877 000	23,0217	8,0927	1,88679	1665,0	22 06 18
531 532 533 534 535 536 537 538 539 540	281961 283024 284089 285156 286225 287296 288369 289444 290521 291600	149721291 150568768 151419437 152273304 153130375 153990656 154854153 155720872 156590819 157464000	23,0434 23,0651 23,0868 23,1084 23,1301 23,1517 23,1733 23,1948 23,2164 23,2379	8,0978 8,1028 8,1079 8,1130 8,1180 8,1231 8,1231 8,1281 8,1332 8,1382 8,1433	1,88324 1,8797 0 1,87617 1,87266 1,86916 1,86567 1,86220 1,85874 1,85529 1,85185	1668,2 1671,3 1674,5 1677,6 1680,8 1683,9 1687,0 1690,2 1693,3 1696,5	221452 2222287 223123 223961 224801 2256484 227329 228175 229022
541	29 2681	158340421	23,2594	8,1483	1,84843	1699,6	229871
542	2937 64	159220088	23,2809	8,1533	1,84502	1702,7	230722
543	294849	160103007	23,3024	8,1583	1,84162	1705,9	231574
544	295936	160989184	23,3238	8,1633	1,83824	1709,0	232428
545	297025	161878625	23,3452	8,1683	1,83486	1712,2	233283
546	2981 16	162771336	23,3666	8,1783	1,83150	1715,3	234140
547	299209	163667323	23,388	8,1783	1,82815	1718,5	234998
548	300304	164566592	23,4094	8,1833	1,82482	1721,6	235858
549	301401	165469149	23,4307	8,1832	1,82149	1724,7	236720
550	302500	166375000	23,4521	8,1932	1,81818	1727,9	237583

n	n^2	n ³	√ n) n	1000 n	πn	$\frac{\pi n^2}{4}$
551 552 553 554 555 556 557 558 559 560	30 3601 30 4704 30 5809 30 6916 30 8025 30 91 36 31 0249 31 13 64 31 24 81 31 3600	167 284 151 168 1966 68 169 112 377 1700 31 464 1709 53 875 171 879 616 172 80 8 693 173 74 111 2 174 676 879 175 61 60 00	23,4734 23,4947 23,5160 23,5372 23,5584 23,5797 23,6008 23,6220 23,6432 23,6643	8,1982 8,2031 8,2081 8,2130 8,2180 8,2229 8,2278 8,2327 8,2327 8,2327 8,2426	1,81488 1,81159 1,80832 1,80505 1,80180 1,79856 1,79533 1,79211 1,78891 1,78571	1731,0 1734,2 1737,3 1740,4 1743,6 1746,7 1749,9 1753,0 1756,2 1759,3	238448 239314 240182 241051 241922 242795 243669 244545 245422 246301
561 562 563 564 565 566 567 568 569 570	31 47 21 31 58 44 31 69 69 31 80 96 31 92 25 82 03 56 32 14 89 32 26 24 32 37 61 32 49 00	176 558 481 177 504 328 178 453 547 179 406 144 180 362 125 181 321 496 182 284 263 183 250432 184 220009 185 193 000	23,6854 23,7065 23,7276 23,7487 23,7697 23,7908 23,8118 23,8328 23,8537 23,8747	8,2475 8,2524 8,2573 8,2621 8,2670 8,2719 8,2768 8,2816 8,2865 8,2913	1,78253 1,77936 1,77620 1,77305 1,76991 1,76678 1,76367 1,76056 1,75747 1,75439	1762,4 1765,6 1768,7 1771,9 1775,0 1778,1 1781,3 1784,4 1787,6 1790,7	247181 248063 248947 249832 25071 251607 252497 253388 254281 255176
571 572 573 574 575 576 577 578 579 580	326041 327184 328329 329476 330625 331776 332929 334084 335241 336400	186 169 411 187 149 248 188 132 517 189 119 224 190 109 375 191 10 29 76 192 100 633 193 100 552 194 104 539 195 112 00	23,8956 23,9165 23,9374 23,9583 23,9792 24,0000 24,0208 24,0416 24,0624 24,0832	8,2962 8,3010 8,3059 8,3107 8,3155 8,3203 8,3251 8,3300 8,3348 8,3396	1,75131 1,74825 1,74520 1,74216 1,73913 1,73611 1,73310 1,7301• 1,72712 1,72414	1793,8 1797,0 1800,1 1803,3 1806,4 1809,6 1812,7 1815,8 1819,0 1822,1	256072 256970 257869 258770 259672 260576 261482 262389 263298 264208
581 582 583 584 585 586 587 588 589 590	337561 338724 339889 341056 342225 343396 344569 345744 346921 348100	196122941 197137368 198155287 1991767 6 4 200201625 201230056 202262003 203297472 204336469 205379000	24,1039 24,1247 24,1454 24,1661 24,1868 24,2074 24,2281 24,2487 24,2693 24,2899	8,3443 8,3491 8,3539 8,3587 8,3684 8,3682 8,3730 8,3777 8,3825 8,3872	1,72117 1,71821 1,71527 1,71233 1,70940 1,70648 1,70358 1,70068 1,69779 1,69492	1825.3 1828.4 1831.5 1834.7 1837.8 1841.0 1844.1 1847.3 1850.4 1853.5	26 51 20 26 60 33 26 69 48 26 67 8 65 26 87 03 27 06 24 27 15 47 27 24 71 27 33 97
591 592 593 594 595 596 597 598 599 600	34 92 81 35 04 64 35 16 49 35 28 36 35 40 25 35 52 16 35 64 09 35 76 04 35 88 01 36 00 00	206425071 207474688 208527857 209584584 210644875 211708736 212776173 213847192 214921799 216000000	24,3105 24,3311 24,3516 24,3721 24,3926 24,4131 24,4336 24,4540 24,4745 24,4949	8,3919 8,3967 8,4014 8,4061 8,4108 8,4155 8,4202 8,4249 8,4249 8,4249	1,69205 1,68919 1,68634 1,68350 1,68785 1,67785 1,67504 1,67224 1,66945 1,66667	1856,7 1859,8 1863,0 1866,1 1869,2 1872,4 1875,5 1878,7 1881,8 1885,•	27 43 25 27 52 54 27 61 84 27 71 17 27 89 86 27 99 23 28 08 62 28 18 02 28 27 43

n	n^2	n³	Ų π	³ √ n	1000 n	лn	$\frac{\pi n^2}{4}$
601	361201	217081801	24,5153	8,4390	1,66389	1888,1	283687
602	362404	218167208	24,5357	8,4437	1,66113	1891,2	284631
603	363609	219256227	24,5561	8,4484	1,65837	1894,4	285578
604	364816	220348864	24,5764	8,4530	1,65563	1897,5	286526
605	366025	221445125	24,5967	8,4577	1,65289	1900,7	287475
606	367236	222545016	24,6171	8,4623	1,65017	1903,8	288426
607	368449	223648543	24,6374	8,4670	1,64745	1906,9	289379
608	369664	224755712	24,6577	8,4716	1,64474	1910,1	290333
609	370881	225866529	24,6779	8,4763	1,64204	1913,2	291289
610	372100	226981000	24,6982	8,4763	1,63934	1916,4	292247
611	37 33 21	228099131	24,7184	8,4856	1,63666	1919,5	293206
612	37 4544	229220928	24,7386	8,4902	1,63399	1922,7	294166
613	37 57 69	230346397	24,7588	8,4948	1,63132	1925,8	295128
614	37 6996	231475544	24,7790	8,4994	1,62866	1928,9	296092
615	37 8225	232608375	24,7992	8,5040	1,62602	1932,1	297057
616	37 94 56	233744896	24,8193	8,5086	1,62338	1935,2	298024
617	380689	234885113	24,8395	8,5132	1,62075	1938,4	29892
618	381924	236029032	24,8596	8,5178	1,61812	1941,5	299962
619	383161	237176659	24,8797	8,5224	1,61551	1944,6	300934
620	384400	238328000	24,8998	8,5270	1,61290	1947,8	301907
621	385641	239483061	24,9199	8,5316	1,61031	1950,9	302882
622	386884	240641848	24,9399	8,5362	1,60772	1954,1	303858
623	388129	241804367	24,9600	8,5408	1,60514	1957,2	304836
624	389376	242970624	24,9800	8,5453	1,60256	1960,4	305815
625	390625	244140625	25,0000	8,5449	1,60000	1963,5	306796
626	391876	245314376	25,0200	8,5544	1,59744	1966,6	307779
627	393129	246491883	25,0400	8,5590	1,59490	1969,8	308763
628	394384	247673152	25,0599	8,5635	1,59236	1972,9	309748
629	395641	248858189	25,0799	8,5681	1,58983	1976,1	310736
630	396900	250047000	25,0998	8,5726	1,58730	1979,2	311725
631	398161	251 289 591	25,1197	8,5772	1,58479	1982,3	3127 15
632	399424	252435968	25,1396	8,5817	1,58228	1985,5	3137 07
633	400689	253636137	25,1595	8,5862	1,57978	1988,6	3147 00
634	401956	254840104	25,1794	8,5907	1,57729	1991,8	315696
635	403225	256047 875	25,1992	8,5952	1,57480	1994,9	316692
636	404496	257259456	25,2190	8,5997	1,57233	1998,1	317690
637	405769	258474853	25,2389	8,6043	1,56986	2001,2	318690
638	407044	259694072	25,2784	8,6088	1,56740	2004,3	3196 92
639	408321	260 917119	25,2784	8,6132	1,56495	2007,5	320695
640	409600	262144000	25,2982	8,6177	1,56250	2010,6	321699
641 642 643 644 645 646 647 648 649 650	410881 412164 413449 414736 416025 417316 418609 419904 421201 422500	263374721 264609288 265847707 267089984 268336125 269586136 270840023 272097792 273359449 274625000	25,3180 25,3377 25,3574 25,3772 25,3969 25,4165 25,4362 25,4558 25,4558 25,4755 25,4951	8,6222 8,6267 8,6312 8,6357 8,6401 8,6446 8,6490 8,6535 8,6579 8,6624	1,56006 1,55763 1,55521 1,55280 1,55039 1,54799 1,54560 1,54321 1,54883 1,53846	2013,8 2016,9 2020,0 2023,2 2026,3 2029,5 2032,6 2035,8 2035,8 2038,9 2042,0	322705 323713 324722 325733 326745 327759 328775 329792 330810 331831

n	h ²	113	√n) n	1000 n	яn	$\frac{\pi n^2}{n}$
651 652 653 654 655 656 657 658 659 660	423801 425104 426409 427716 429025 430336 431649 432964 434281 43 5600	275894451 277167608 278445077 279726264 281011375 282300416 283593393 284890312 286191179 287496000	25,5147 25,5348 25,5539 25,5734 25,5930 25,6125 25,6320 25,6515 25,6710 25,6905	8,6668 8,6713 8,6757 8,6801 8,6845 8,6890 8,6934 8,6978 8,7022 8,7066	1,53610 1,53374 1,53139 1,52905 1,52672 1,52439 1,52207 1,51976 1,51745 1,51515	2045,2 2048,3 2051,5 2054,6 2057,7 2060,9 2067,2 2070,3 2073,5	332853 333876 334901 335927 336955 337985 339016 340049 341083 342119
661	43 69 21	288804781	25,7099	8,7110	1,51286	2076,6	34 31 57
662	43 82 44	290117528	25,7294	8,7154	1,51057	2079,7	34 41 96
663	43 95 69	291434247	25,7488	8,7198	1,50830	2082,9	34 52 37
664	44 08 96	292754944	25,7682	8,7241	1,50602	2086,0	34 62 79
665	44 22 25	294079625	25,7876	8,7285	1,50376	2089,2	34 73 23
666	44 35 56	295408296	25,8070	8,7329	1,50150	2092,3	34 83 68
667	44 48 89	296740963	25,8263	8,7373	1,49925	2095,4	34 94 15
668	44 62 24	298077632	25,8457	8,7416	1,49701	2098,6	35 04 64
669	44 75 61	299418309	25,8650	8,7460	1,49477	2101,7	35 15 14
670	44 89 00	300763000	25,8844	8,7503	1,49254	2104,9	35 25 65
671	450241	302111711	25,9037	8,7547	1,49031	2108,0	353618
672	451584	303464448	25,9230	8,7590	1,48810	2111,2	354673
673	452929	304821217	25,9422	8,7634	1,48588	2114,3	355730
674	454276	306182024	25,9615	8,7677	1,48368	2117,4	356788
675	455625	307546875	25,9808	8,7721	1,48148	2120,6	357847
676	456976	308915776	26,0000	8,7764	1,47929	2123,7	358908
677	458329	310288733	26,0192	8,7807	1,47710	2126,9	359971
678	459684	311665752	26,0384	8,7850	1,47493	2130,0	361035
679	461041	313046839	26,0576	8,7893	1,47275	2133,1	362101
680	462400	314432000	26,0768	8,7937	1,47059	2136,3	363168
681	463761	315821241	26,0960	8,7980	1,46843	2139,4	364237
682	465124	317214568	26,1151	8,8023	1,46628	2142,6	365308
683	466489	318611987	26,1343	8,8066	1,46413	2145,7	366380
684	467856	320013504	26,1534	8,8109	1,46199	2148,7	367453
685	469225	321419125	26,1725	8,8152	1,45985	2152,0	368528
686	470596	322828856	26,1916	8,8194	1,45773	2155,1	369605
687	471969	324242703	26,2107	8,8237	1,45560	2158,3	370684
688	473344	325660672	26,2298	8,8280	1,45349	2161,4	371764
689	474721	327082769	26,2488	8,8323	1,45138	2164,6	372845
690	476100	328509000	26,2679	8,8366	1,44928	2167,7	373928
691 692 693 694 695 696 697 698 699	477481 478864 480249 481636 483025 484416 485809 487204 488601 490000	329939371 331373888 332812557 334 255384 335702375 337 153536 338608873 340068392 341532099 343000000	26,2869 26,3059 26,3249 26,3439 26,3629 26,3818 26,4008 26,4197 26,4386 26,4575	8,8408 8,8451 8,8493 8,8536 8,8578 8,8621 8,8663 8,8706 8,8748 8,8790	1,44718 1,44509 1,44300 1,44092 1,43885 1,43678 1,43472 1,43266 1,43062 1,42857	2170,8 2174,0 2177,1 2180,3 2183,4 2186,5 2189,7 2192,8 2196,0 2199,1	375013 376099 377187 378276 379367 380459 381553 382649 383746 384845

n	11 ²	113) n	3 n	1000 n	яn	7n ² /4
701	491401	344 472101	26,4764	8,8833	1,42653	2202,3	385945
702	492804	345948408	26,4953	8,8875	1,42450	2205,4	387047
703	494209	347428927	26,5141	8,8917	1,42248	2208,5	388151
704	495616	348913664	26,5330	8,8959	1,42045	2211,7	389256
705	497025	350402625	26,5518	8,9001	1,41844	2214,8	390363
706	498436	351895816	26,5707	8,9043	1,41643	2218 0	391471
707	499849	353393243	26,5895	8,9085	1,41443	2221,1	392580
708	501264	354894912	26,6083	8,9127	1,41243	2224,2	393692
709	502681	356400829	26,6271	8,9169	1,41044	2227,4	394805
710	504100	357911000	26,6458	8,9211	1,40845	2230,5	395919
711	50 5521	359425431	26,6646	8,9253	1,40647	2233,7	397035 398153 399272 400393 401515 402639 403765 404892 406020 407150
712	506944	360944128	26,6833	8,9295	1,40449	2236,8	
713	508369	362467097	26,7021	8,9337	1,40252	2240,0	
714	50 97 96	363994344	26,7208	8,9378	1,40056	2243,1	
715	51 1225	365525875	26,7395	8,9420	1,39860	2246,2	
716	51 2656	367061696	26,7582	8,9462	1,39665	2249,4	
717	51 4089	368601813	26,7769	8,9503	1,39470	2252,5	
718	51 5524	370146232	26,7955	8,9545	1,39276	2255,7	
719	51 69 61	371694959	26,8142	8,9587	1,39082	2258,8	
720	51 84 00	373248000	26,8328	8,9628	1,38889	2261,9	
721	51 9841	374805361	26,8514	8,9670	1,38696	2265,1	408282
722	521284	376367048	26,8701	8,9711	1,38504	2268,2	409415
723	522729	377933067	26,8887	8,9752	1,38313	2271,4	410550
724	524176	379503424	26,9072	8,9794	1,38122	2274,5	411687
725	525625	381078125	26,9258	8,9835	1,37931	2277,7	412825
726	527076	382657176	26,9444	8,9876	1,97741	2280,8	413965
727	528529	384240583	26,9629	8,9918	1,37552	2283,9	415106
728	529984	385828352	26,9815	8,9959	1,37363	2287,1	416248
729	531441	387420489	27,0000	9,0000	1,37174	2290,2	417393
730	532900	389017000	27,0185	9,0041	1,36986	2293,4	418539
731 732 733 734 735 736 737 738 739 740	53 4361 535824 537289 53 87 56 54 0225 54 1696 543169 544644 54 6121 54 7600	$\begin{array}{c} 390617891 \\ 392223168 \\ 393832837 \\ 395446904 \\ 397065375 \\ 398688256 \\ 400315553 \\ 401947272 \\ 403583419 \\ 405224000 \end{array}$	27,0370 27,0555 27,0740 27,0924 27,1109 27,1293 27,1477 27,1662 27,1846 27,2029	9,0082 9,0123 9,0164 9,0205 9,0246 9,0287 9,0328 9,0369 9,0410 9,0450	1,36799 1,36612 1,36426 1,36240 1,36054 1,35870 1,35685 1,35501 1,35318 1,35135	2296,5 2299,6 2302,8 2305,9 2309,1 2312,2 2315,4 2318,5 2321,6 2324,8	419686 420835 421986 423138 424293 425447 426604 427762 428922 430084
741	54 90 81	406869021	27,2213	9,0491	1,34953	2327,9	431247
742	550564	408518488	27,2397	9,0532	1,34771	2331,1	432412
743	5520 49	410172407	27,2580	9,0572	1,34590	2334,2	433578
744	5535 36	411830784	27,2764	9,0613	1,34409	2337,3	434746
745	555025	413493625	27,3947	9,0654	1,34228	2340,5	435916
746	556516	415160936	27,3130	9,0694	1,34048	2343,6	437087
747	55809	416832723	27,3313	9,0735	1,33869	2346,8	438259
748	559504	418508992	27,3496	9,0775	1,33690	2349,9	439433
749	561001	420189749	27,3679	9,0816	1,33511	2353,1	440609
750	562500	421875000	27,3861	9,0856	1,33333	2356,2	441786

n	112	n³] n	3 <u> </u>	1000 n	яn	$\frac{\pi n^2}{4}$
751 752 753 754 755 756 757 758 759 760	564001 565504 567009 568516 570025 571536 573049 574564 576081	423564751 425259008 426957777 428661064 430368875 432081216 433798093 435 519512 437245479 438976000	27,4044 27,4226 27,4408 27,4591 27,4773 27,4955 27,5136 27,5318 27,5500 27,5681	9,0896 9,0937 9,0977 9,1017 9,1057 9,1098 9,1138 9,1178 9,1218 9,1258	1,33156 1,32979 1,32802 1,32626 1,32450 1,32275 1,32100 1,31926 1,31752 1,31579	2359,3 2362,5 2365,6 2368,8 2371,9 2375,0 2378,2 2381,3 2384,5 2387,6	442965 444146 445328 446511 447697 448883 450072 451262 452453 453646
761 762 763 764 765 766 767 768 769	579121 580644 582169 583696 585225 586756 588289 589824 591361 592900	440711081 442450728 444194947 445943744 447697125 449455096 451217663 452984832 454756609 456533000	27,5862 27,6043 27,6225 27,6405 27,6586 27,6767 27,6948 27,7128 27,7308 27,7489	9,1298 9,1338 9,1378 9,1418 9,1458 9,1498 9,1537 9,1577 9,1617 9,1657	1,31406 1,31234 1,31062 1,30890 1,30719 1,30548 1,30378 1,30208 1,30039 1,29870	2390,8 2393,9 2397,0 2400,2 2403,3 2406,5 2409,6 2412,7 2415,9 2419,0	454841 45637 457234 458434 459635 460837 462041 463247 464454 465663
771 772 773 774 775 776 777 778 779	594441 595984 597529 599076 600625 602176 603729 605284 606841 608400	458314011 460099648 461889917 463684824 465484875 467288576 469097433 470910952 472729139 474552000	27,7669 27,7849 27,8029 27,8209 27,8388 27,8568 27,8747 27,8927 27,9106 27,9285	9,1696 9,1736 9,1775 9,1815 9,1855 9,1894 9,1933 9,1973 9,2012 9,2052	1,29702 1,29534 1,29366 1,29199 1,28866 1,28700 1,28535 1,28370 1,28205	2422,2 2425,3 2428,5 2431,6 2434,7 2437,9 2441,0 2444,2 2447,3 2450,4	466873 468085 469298 470513 471730 472948 474168 475389 476612 477836
781 782 783 784 785 786 787 788 789	60 9961 61 1524 61 3089 61 4656 61 6225 61 7796 61 9369 620944 622521 62 4100	476 379541 478211768 480048687 481 890304 483 736 625 485587 656 487 443 403 489303872 491 169069 493039000	27,9464 27,9643 27,9821 28,0000 28,0179 28,0357 28,0535 28,0713 28,0891 28,1069	9,2091 9,2130 9,2170 9,2209 9,2248 9,2287 9,2326 9,2365 9,2404 9,2443	1,28041 1,27877 1,27714 1,27551 1,27389 1,27226 1,27065 1,26904 1,26743 1,26582	2453,6 2456,7 2459,9 2463.0 2466,2 2469,3 2472,4 2475,6 2478,7 2481,9	479062 480290 481519 482750 483982 485216 486451 487688 488927 490167
791 792 793 794 795 796 797 798 799 800	62 5681 62 7264 62 88 49 63 04 36 63 20 25 63 36 16 63 52 09 63 68 04 63 84 01 64 00 00	494 913 671 496793088 498677 257 500566184 502459875 504358336 506261 573 508 169 592 510082399 512000000	28,1247 28,1425 28,1603 28,1780 28,1957 28,2135 28,2312 28,2489 28,2666 28,2843	9,2482 9,2521 9,2560 9,2599 9,2638 9,2677 9,2716 9,2754 9,2793 9,2832	1,26422 1,26263 1,26103 1,25945 1,25786 1,25628 1,25471 1,25313 1,25156 1,25000	2485,0 2488,1 2491,3 2494,4 2497,6 2500,7 2503,8 2507,0 2510,1 2513,3	491409 492652 493897 495143 496391 497641 498892 500145 501399 502655

n	n²	n³	l/ n	n s	1000 n	яn	7n ² 4
801	641601	513 922401	28,3019	9,2870	1,24844	2516,4	503912
802	643204	515 849608	28,3196	9,2909	1,24688	2519,6	505171
803	644809	517 781 627	28,3373	9,2948	1,24533	2522,7	506432
804	646416	519718 464	28,3549	9,2986	1,24378	2525,8	507694
805	648025	521660125	28,3725	9,3025	1,24224	2529,0	508958
806	649636	523606616	28,3901	9,3063	1,24069	2532,1	510223
807	651249	525557 943	28,4077	9,3102	1,23916	2535,3	511490
808	652864	527 514112	28,4253	9,3140	1,23762	2538,4	512758
809	654481	529475129	28,4429	9,3179	1,23609	2541,5	514028
810	656100	531441000	28,4605	9,3217	1,23457	2544,7	515300
811 812 813 814 815 816 817 818 819 820	$\begin{array}{c} 657721 \\ 659344 \\ 660969 \\ 662596 \\ 664225 \\ 665856 \\ 667489 \\ 669124 \\ 670761 \\ 672400 \end{array}$	533411731 535387328 537367797 539353144 541343375 543338496 545338513 547343432 549353259 551368000	28,4781 28,4956 28,5132 28,5307 28,5482 28,5657 28,5832 28,6007 28,6182 28,6356	9,3255 9,3294 9,3332 9,3370 9,3447 9,3445 9,3523 9,3561 9,3599	1,23305 1,23153 1,23001 1,22850 1,22699 1,22549 1,22399 1,22249 1,22100 1,21951	2547,8 2551,0 2554,1 2557,3 2560,4 2563,5 2566,7 2569,8 2573,0 2576,1	516573 517848 519124 520402 521681 522962 524245 525529 526814 528102
821	674041	553387661	28,6531	9,3637	1,21803	2579,2	52 93 91
822	675684	555412248	28,6705	9,3675	1,21655	2582,4	53 06 81
823	677329	557441767	28,6880	9,3713	1,21507	2585,5	53 1973
824	678976	559476224	28,7054	9,3751	1,21359	2588,7	53 32 67
825	680625	561515625	28,7228	9,3789	1,21212	2591,8	53 45 62
826	682276	563559976	28,7402	9,3827	1,21065	2595,0	53 58 58
827	683929	565609283	28,7576	9,3865	1,20919	2598,1	53 71 57
828	685584	567663552	28,7750	9,3902	1,20773	2601,2	53 8 4 56
829	687241	569722789	28,7924	9,3940	1,20627	2604,4	53 97 58
830	688900	571787000	28,8097	9,3978	1,20482	2607,5	54 10 61
831	690561	573856191	28,8271	9,4016	1,20337	2610,7	542365
832	692224	575930368	28,8444	9,4053	1,20192	2613,8	543671
833	693889	578009537	28,8617	9,4091	1,20048	2616,9	544979
834	695556	580093704	28,8791	9,4129	1,19904	2620,1	546288
835	697225	582182875	28,8964	9,4166	1,19760	2623,2	547599
836	698896	584277056	28,9137	9,4204	1,19617	2626,4	548912
837	700569	586376253	28,9310	9,4241	1,19474	2629,5	550226
838	702244	588480472	28,9482	9,4279	1,19332	2632,7	551541
839	703921	590589719	28,9655	9,4316	1,19190	2635,8	552858
840	705600	592704000	28,9828	9,4354	1,19048	2638,9	554177
841	707281	594823321	29,0000	9,4391	1,18906	2642,1	555497
842	708964	596947688	29,0172	9,4429	1,18765	2645,2	556819
843	710649	599077107	29,0345	9,4466	1,18624	2648,4	558142
844	712336	601211584	29,0517	9,4503	1,18483	2651,5	559467
845	714025	603351125	29,0689	9,4541	1,18343	2654,6	560794
846	715716	605495736	29,0861	9,4578	1,18203	2657,8	562122
847	717409	607645423	29,1033	9,4615	1,18064	2660,9	563452
848	719104	609800192	29,1204	9,4652	1,17925	2664,1	564783
849	720801	611960049	29,1376	9,4690	1,17786	2667,2	566116
850	722500	614125000	29,1548	9,4727	1,17647	2670,4	567450

n	n²	n³	√ n) n	1000 n	πn	7 n ²
851 852 853 854 855 856 857 858 859 860	724201 725904 727609 729316 731025 732736 734449 736164 737881 739600	616295051 618470208 620650477 622835864 625026375 627222016 629422793 631628712 633839779 636056000	29,1719 29,1890 29,2062 29,2233 29,2404 29,2575 29,2746 29,2916 29,3087 29,3258	9,4764 9,4801 9,4838 9,4875 9,4912 9,4949 9,5023 9,5060 9,5097	1,17509 1,17371 1,17233 1,17096 1,16959 1,16822 1,16686 1,16550 1,16414 1,16279	2673,5 2676,6 2679,8 2682,9 2686,1 2689,2 2692,3 2695,5 2698,6 2701,8	568786 570124 571463 572803 57490 576835 578182 579530 580880
861 862 863 864 865 866 867 868 869	741321 743044 744769 746496 748225 749956 751689 753424 755161 756900	638277381 640503928 642735647 644972544 647214 625 649461896 651714363 653972032 656234909 658503000	29,3428 29,3598 29,3769 29,3939 29,4109 29,4279 29,4449 29,4618 29,4788 29,4958	9,5134 9,5171 9,5207 9,5244 9,5281 9,5317 9,5354 9,5391 9,5427 9,5464	1,16144 1,16009 1,15875 1 15741 1,15607 1,15473 1,15340 1,15207 1,15075 1,14943	2704,9 2708,1 2711,2 2714,3 2717,5 2720,6 2723,8 2726,9 2730,0 2733,2	582232 583585 584940 586297 587655 589014 590375 591738 593102
871 872 873 874 875 876 877 878 879 880	758641 760384 762129 763876 765625 767376 769129 770884 772641 774400	660776311 663054848 665338617 667627624 669921875 672221376 674526133 676836152 679151439 681472000	29,5127 29,5296 29,5466 29,5635 29,5804 29,5973 29,6142 29,6311 29,6479 20,6648	9,5501 9,5537 9,5574 9,5610 9,5647 9,5683 9,5719 9,5756 9,5792 9,5828	1,14811 1,14679 1,14548 1,14416 1,14286 1,14155 1,14025 1,13895 1,13766 1,13636	2736,3 2739,5 2742,6 2745,8 2745,8 2752,0 2752,2 2758,3 2761,5 2764,6	595835 597204 598575 599947 601320 602696 604073 605451 606831 608212
881 882 883 884 885 886 887 888 889	77 61 61 77 79 24 77 79 68 9 78 14 56 78 32 25 78 49 96 78 67 69 78 85 44 79 03 21 79 21 00	683 797 841 686128968 688465387 690 807 104 693 154125 695506456 697 864103 700227072 702595369 704969000	29,6816 29,6985 29,7153 29,7321 29,7489 29,7658 29,7825 29,7993 29,8161 29,8329	9,5865 9,5901 9,5937 9,5973 9,6010 9,6082 9,6118 9,6154 9,6190	1,13507 1,13379 1,13250 1,13122 1,12994 1,12867 1,12740 1,12613 1,12486 1,12360	2767,7 2770,9 2774,0 2777,2 2780,3 2783,5 2786,6 2789,7 2792,9 2796,0	609595 610980 612366 613744 615744 616534 617927 619321 620717 622114
891 892 893 894 895 896 897 898 899	793881 795664 797449 799236 801025 802816 804609 806404 808201 810000	707347971 709732288 712121957 714516984 716917375 719323136 721734273 724150792 726572699 729000000	29,8496 29,8664 29,8831 29,8998 29,9166 29,9333 29,9500 29,9666 29,9833 30,0000	9,6226 9,6262 9,6298 9,6334 9,6370 9,6406 9,6442 9,6477 9,6513 9,6549	1,12233 1,12108 1,11982 1,11857 1,11732 1,11607 1,11483 1,11359 1,11235 1,11111	2709,2 2802,3 2805,4 2808,6 2811,7 2814,9 2818,0 2821,2 2824,3 2827,4	62 35 13 62 49 13 62 63 15 62 77 18 62 91 24 63 05 30 63 19 38 63 33 48 63 47 60 63 61 73

n	n²	n³	√ n	³ V n	1000 n	an	71 N 2
							4
901 902 903 904 905 906 907 908 909 910	81 1801 81 3604 81 5409 81 7216 81 9025 82 0836 82 2649 82 4464 82 6281 82 8100	731432701 733870808 736314327 738763264 741217625 743677416 746142643 748613312 751089429 753571000	30,0167 30,0333 30,0500 30,0666 30,0832 30,0998 30,1164 30,1330 30,1496 30,1662	9,6585 9,6620 9,6656 9,6692 9,6727 9,6763 9,6789 9,6834 9,6870 9,6905	1,10988 1,10865 1,10742 1,10619 1,10497 1,10375 1,10254 1,10132 1,10011 1,09890	2830,6 2833,7 2836,9 2840,0 2843,1 2846,3 2849,4 2852,6 2855,7 2858,8	637587 639003 640421 641840 643261 644683 646107 647533 648960 650388
911 912 913 914 915 916 917 918 919	829921 831744 833569 835396 837225 839056 840889 842724 844561 846400	756058031 758550528 761048497 763551944 766060875 768575296 771095213 773620632 776151559 778688000	30,1828 30,1993 30,2159 30,2324 30,2490 30,2655 30,2820 30,2985 30,3150 30,3315	9,6941 9,6976 9,7012 9,7047 9,7082 9,7118 9,7153 9,7188 9,7224 9,7259	1,09769 1,09649 1,09529 1,09409 1,09290 1,09170 1,09051 1,08932 1,08814 1,08696	2862,0 2865,1 2868,3 2871,4 2874,6 2877,7 2880,8 2884,0 2887,1 2890,3	651818 653250 654684 656118 657555 658993 660433 661874 663317 664761
921 922 923 924 925 926 927 928 929	848241 850084 851929 853776 855625 857476 859329 861184 863041 864900	781 229961 783 777 448 786330467 7888880424 791 453125 794022776 796597983 799178752 801 765089 804357000	30,3480 30,3645 30,3809 30,3974 30,4138 30,4302 30,4467 30,4631 30,4795 30,4959	9.7294 9.7329 9.7364 9.7400 9.7435 9.7470 9.7505 9.7540 9.7575 9.7610	1,08578 1,08460 1,08342 1,08225 1,08108 1,07991 1,07759 1,07643 1,07527	2893,4 2896,5 2899,7 2902,8 2906,0 2909,1 2912,3 2915,4 2918,5 2921,7	666207 667654 669103 670554 672006 673460 674915 676372 677831 679291
931 932 933 934 935 936 937 938 939	866761 868624 870489 872356 874225 876096 877969 879844 881721 883600	806954491 809557568 812166237 814780507 820025856 82265958 825293672 827936019 830584000	30,5123 30,5287 30,5450 30,5614 30,5778 30,5941 30,6105 30,6268 30,6431 30,6594	9,7645 9,7680 9,7715 9,7750 9,7785 9,7819 9,7854 9,7889 9,7924 9,7959	1,07411 1,07296 1,07181 1,07066 1,06952 1,06838 1,06724 1,06610 1,06496 1,06383	2924,8 2928,0 2931,1 2934,2 2937,4 2940,5 2943,7 2946,8 2950,0 2953,1	6807 52 682216 683680 685147 686615 688084 689555 691028 692502 693978
941 942 943 944 945 946 947 948 949 950	885481 887364 889249 891136 893025 894916 896809 898704 900601 902500	833237621 835896888 838561807 841232384 843908625 846590536 849278123 851971392 854670349 857375000	30,6757 30,6920 30,7083 30,7246 30,7409 30,7571 30,7734 30,7896 30,8058 30,8221	9,7993 9,8028 9,8063 9,8097 9,8132 9,8167 9,8201 9,8236 9,8270 9,8305	1,06270 1,06157 1,06045 1,05932 1,05820 1,05708 1,05597 1,05485 1,05374 1,05263	2956,2 2959,4 2962,5 2965,7 2968,8 2971,9 2975,1 2978,2 2981,4 2984,5	695455 696934 698415 699897 701380 702865 704352 705840 707330 708822

n	n²	n³	√n	$\sqrt[3]{n}$	1000 n	яn	$\frac{\pi n^2}{4}$
951 952 953 954 955 956 957 958 959 960	904401 906304 908209 910116 912025 913936 915849 917764 919681 921600	860085351 862801408 865523177 868250664 87098387 873722816 876467493 879217912 881974079 884736000	30,8383 30,8545 30,8707 30,8869 30,9031 30,9192 30,9354 30,9516 30,9677 30,9839	9,8339 9,8374 9,8408 9,8443 9,8511 9,8516 9,8580 9,8614 9,8648	1,05152 1,05042 1,04932 1,04822 1,04712 1,04603 1,04493 1,04384 1,04275 1,04167	2987,7 2990,8 2993,9 2997,1 3000,2 3003,4 3006,5 3009,6 3012,8 3015,9	710315 711809 713306 714803 716303 717804 719306 720810 722316 723823
961 962 963 964 965 966 967 968 969	923521 925444 927369 929296 931225 933156 935089 937024 938961 940900	887503681 890277128 893056347 895841344 99632125 901428696 904231063 907039232 909853209 912673000	31,0000 31,0161 31,0322 31,0483 31,0644 31,0805 31,0966 31,1127 31,1288 31,1448	9,8683 9,8717 9,8751 9,8785 9,8819 9,8854 9,8888 9,8922 9,8956 9,8990	1,04058 1,03950 1,03842 1,03734 1,03627 1,03520 1,03413 1,03306 1,03199 1,03093	3019,1 3022,2 3025,4 3028,5 3031,6 3034,8 3037,9 3041,1 3044,2 3047,3	725332 726842 728354 729867 731382 732899 734417 735937 737458 738981
971 972 973 974 975 976 977 978 979	942841 944784 946729 948676 950625 952576 954529 956484 958441 960400	915498611 918330048 921167317 924010424 926859375 929714176 932574833 935441352 938313739 941192000	31,1609 31,1769 31,1929 31,2090 31,2250 31,2410 31,2570 31,2730 31,2890 31,3050	9,9024 9,9058 9,9092 9,9126 9,9160 9,9194 9,9227 9,9261 9,9295 9,9329	1,02987 1,02881 1,02775 1,02669 1,02564 1,02459 1,02354 1,02249 1,02145 1,02041	3050,5 3053,6 3056,8 3059,9 3063,1 3066,2 3069,3 3072,5 3075,6 3078,8	740506 742032 743559 745088 746619 748151 749685 751221 752758 754296
981 982 983 984 985 986 987 988 989	962361 964324 966289 968256 970225 972196 974169 976144 978121 980100	944076141 946966168 949862087 952763904 955671625 968585256 961 504 803 964430272 967361669 970299000	31,3209 31,3369 31,3528 31,3688 31,3847 31,4006 31,4166 31,4325 31,4484 31,4643	9,9363 9,9396 9,9430 9,9464 9,9497 9,9531 9,9565 9,9598 9,9632 9,9666	1,01937 1,01833 1,01729 1,01626 1,01523 1,01420 1,01317 1,01215 1,01112 1,01010	3081,9 3085,0 3088,2 3091,3 3094,5 3097,6 3100,8 3103,9 3107,0 3110,2	755837 757378 758922 760466 762013 763561 765111 766662 768214 769769
991 992 993 994 995 996 997 998 999	982081 984064 986049 988036 990025 992016 994009 996004 998001 1000000	973242271 976191488 979146657 982107787 985074875 988047936 991026973 994011992 997002999 1000000000	31,4802 31,4960 31,5119 31,5278 31,5436 31,5595 31,5753 31,5911 31,6070 31,6228	9,9699 9,9733 9,9766 9,9800 9,9833 9,9866 9,9900 9,9933 9,9967	1,00908 1,00806 1,00705 1,00604 1,00503 1,00402 1,00301 1,00200 1,00100 1,00000	3113,3 3116,5 3119,6 3122,7 3125,9 3129,0 3132,2 3135,3 3138,5 3141,6	771325 772882 774441 77606 777564 779128 780693 782260 783828 785398

Stichworte

A

Abdampfstrahlpumpe 103 Abessinien 29 Abfederung 87 Abgasvolumen 122-125 Abkühlungsverluste 251 Abkürzungen 351 Abraumlokomotiven siehe Tagebaulokomotiven Abreißwiderstand 58 abschaltbare Triebachse 61 Abtriebsüberschuß 69 Achsanordnung 44-46 Achsdruck 33 Achslager 192 Achsschenkeldurchmesser 193 Achsstand 36 Achssteuerung 400 Achswelle 193 Achterberg 104 Adamsachse 74 Adhesive factor 60 Adriatic-Bauart 44 Agypten 11, 29 Agypt. Staatsbahn 172, 282, 371, 377 Akkulokomotive siehe Speicherfahrzeug Algier 29 Allan-Trick-Steuerung 206 Alleghany-Bauart 46 Amboim Rv 168, 356 American-Bauart 44 Amerikanische Lokomotivberechnung 152 u.f. Amerikanisches Drehgestell 73, 80 Anatolische Bahn 256 Anfahrbeschleunigung 59, 64 Anfahrvorgang 58, 110 Anfahrwiderstand 58 Angola 29 Anheizen 110 Ankerlose Kessel 184 anlaufende Achsen 69 u.f. Anlauf winkel 68, 71, 72 Anteilige Zugkraft 62 n. f. Antioquia-Bahn 172, 360 Antrieb der Triebfahrzeuge 17 Arbeitsdiagramm 253 Arbeitseinheit 286 Arbeitsverbrauch 263

Arbeitsvermögen 250, 251 Argentinien 11, 29, 174, 282 Argentinische Staatsb. 172, 174, 404 Aschegehalt 122 Aschkasten 116 ASTM-Bedingungen 186 Atlantic-Bauart 44 Aufdorn-Stehbolzen 182 Aufladung 273 Ausgleichhebel 90, 97 Ausgleich der Massen 194 Außenrahmen 87 Äußere Steuerung 204 Ausstellungsbahnen 28 Ausströmrohr 188 Ausströmweg 136 Australien 29, 381 Auswuchten 199

B Bach 301 Baker-Steuerung 207, 210 Baldwin, Lok.-Berechnung nach B. 152, 163 Baldwin-Beugniot-Gestell 75, 77, 82 Baltic-Bauart 44 Barbiersche Formel 54 Baulokomotiven 68, 176, 282, 365, 369 Baustoff-Verzeichnis 26 Beanspruchung von Werkstoffen 300 Begrenzung der Fahrzeuge 37-43 Begrenzungslinie 36 u.f. Beharrungszustand 49-52, 58, 64, 65 Beira-Alta-Bahn 174 Belastungstafeln 65 Beleuchtung 231-233 Belgien 29 Belgisch-Kongo 29 Benguela 29 Benson-Kessel 243 Bergedorf-Geesthachter Eisenb. 168 Berkshire-Bauart 44 Bern-Lötschberg-Simplon-Bahn 256 Beschleunigung 58, 59, 64 Beschleunigungswiderstand 49, 58 Bestimmungen siehe gesetzl. Best. Beugniot-Gestell 75, 77, 82 Bever-Garratt 149, 170, 393, 407

Bicycle-Bauart 44

Biegungsbeanspruchung 193, 300 Bisselgestell 73, 74, 76, 79, 80 Blasrohr 179, 180 Blasrohrdruck 116 Blattfeder 87, 88 Bogenlauf 69-86 Bolivien 29 Booster 61, 229 von Borries 54, 87, 146, 193 Bourbonnais-Bauart 44 Brasilianische Nordwestbahn 168, 170. 174. 393 Brasilianische Zentralbahn 174, 361, Brasilien 11, 29, 168-174, 361, 394 Braunkohle 108, 115, 123 Braunkohlenfeuerung 109, 112, 176 Braunkohlentagebau 65, 268, 362, 364 Breitspur 29 Bremse, 91 u.f., 396 Bremsleistung 96 Bremsverzögerung 95, 96 Bremsweg 93, 94 Brennstaubfeuerung 13, 239, 381, 395 Brennstoffbedarf 109 Brennstoffe 108, 122, 274 Brennstoffkosten 284 Brennstoffverbrauch 110 Brenntemperatur der Kohle 116 Britisch-Ostafrika 172 Brückenbelastung 34, 35 Brückenfahrzeug 72 Brückmann 122 Buddicom-Bauart 44 Bulgarien 11, 29 Bulgarlsche Staatsb. 170, 174, 256, 358 Bundesbahn siehe Deutsche Bundesb. Burma Railway 168, 172

-

Caprotti-Steuerung 208 Centlpede-Bauart 45 Ceylon 29 Challenger-Bauart 46 Chekiang-Klangsi-Bahn 172, 368 Chile 11, 29, 268 Chilenische Staatsbahn 174, 268, 368, 373 China 11, 29, 168, 172—174, 368 Clapeyronsches Verfahren 91 Clarksche Formel 54 Cole, Lok. - Berechnung nach C. 152, 157
Columbia-Bauart 44
Columbien 29, 172, 360
Confederation-Bauart 44
Consolidation-Bauart 44
Cooper's standard loading 34, 35
Costa Rica 29
Coupler-Bauarten 44, 45
Crampton-Bauart 44
Cuba 29
Cypern 29

D

Dampfausströmrohr 188 Dampf bremse 98 Dampfdrehgestell 149 Dampfdruck siehe Kesseldruck Dampfdruckschaubild 205, 217, 224 bis 227 Dampfeinströmrohr 188 Dampferzeugung 103, 118, 153-156, 160, 252 Dampfgeschwindigkeit 116, 188, 204 Dampfheizung 103 Dampfkessel-Bestimmungen 27 Dampfraum 114 Dampfstrahlpumpe 103 Dampftafel 127-130 Dampfturbinenlokomotive 247 Dampfverbrauch 103-105, 147, 156 n. f. Dampf verteiler 204 Dampfzylinder (Wanddicke) 193 Dänemark 11, 29 Darieeling 29 Dauerleistung 101, 103, 264, 270 Dauerzugkraft 132, 264 Decapod-Bauart 45 Deichsellänge 73 Deli-Bahn 168 Deutsche Bundesbahn 26, 32, 61, 66, 88, 115, 142, 164, 166, 172, 213, 231, 256, 268, 294, 359, 373, 382-392, 397, 401-405 Deutsche Industrienormen 28 Deutsche Lokomotivnormen 28, 45 Deutsche Reichsbahn 34, 115, 141, 164, 166, 170, 179, 268, 382, 383, 386-391, 395 Dienstgewicht 49 Dieselelektrische Lokomotive 282, 407

Diesellokomotive 279, 282 Dieselmotor 272 Doble-Kessel 243 Double Ender-Bauart 44 Drache 12 Drehen 146 Drehgestell 71-82 Drehstrom 257, 260 Drehzahl 133 u.f., 147, 148 Drehzahldrückung 277 Dreipunktstützung 90 Dreizylinder-Verbundlokomotive 131 144 Drillinglokomotive 131, 145, 146, 164-174, 219 Drosselung des Dampfes 136 Druckausgleichschieber 220 u. f. Druckluftbremse 103, 396 Druckölsteuerung 208 Druckprobe 115 Druckverlust durch Abkühlung 251 durchgehende Bremse 97 Dugas 21, 22 dynamische Einstellung 69

E Eckhardt 68 Eckhardt II-Gestell 75, 77, 79, 81 Ecuador 29 effektive Leistung 47 effektive Zugkraft 47, 65, 132 Einheitsbohrung 302, 303 Einheitslokomotive 13, 164—167, 382 u.f., 402, 403 Einrahmenfahrzeuge 71, 72 Einströmrohr 188 Einzelachsantrieb 14, 46, 61, 248, 249, 265 Eisenbahn-Bau- u. Betriebsordnung 25. 38 u.f. Elektrische Beleuchtung 231-233 Elektrische Bremse 259, 260 Elektrische Kraftübertragung 277 Elektrische Lokomotive 13, 50, 59, 133, 257 u. f., 268, 373-375, 392 Elektrische Zugförderung 18 Elektrischer Zugbetrieb 257 Elna-Lokomotiven 178, 369 England 28 Englische Maße und Gewichte 304 u.f. Entwurfsgewicht 185 Entwurf von Lokomotiven und Triebwagen 24

Erdől 123 Erfurter Formel 54 erste Henschel-Lokomotive 12 Estland 29 Europa 29

F

Factor of adhesion 60 Fahrgeschwindigkeit 133, 134, 159, 198 204 Fahrpumpe 103 Fahrzeugbegrenzung 37-43 Fairlie-Lokomotive 150 falscher Spurkranz 70 Feder 87-89 Federausgleich 90 Federkonstante 89 Federtopfantrieb 265 Feldbahnen 29, 54, 172, 356 feste Achse 69 feste Brennstoffe 122-124, 274 fester Achsstand 36, 68 Festigkeitswerte von Werkstoffen 300 feuerberührte Heizfläches, Heizfläche Feuerbüchse 181, 182, 186 Feuerbüchsheizfläche 107 Feuerbüchsstahl 186 Feuerbüchstiefe 114 feuerlose Lokomotive 250 u. f., 364 Feuerraumbelastung 238 Finnische Staatsbahnen 168, 170, 363 Finnland 29, 168 Flächenmaße 285, 304, 305, 311 Flächenpressung 192 Fliehkraft 69 Hüssige Brennstoffe 123, 125, 274 Flüssigkeitswärme 127 Föttinger-Prinzip 275, 276 Forney coupled-Bauart 44 Franco-Crosti-Lokomotive 14, 189, 401 Frankreich 11, 29, 168 Franksche Formel 57 Französische Kolonien 29 Französisch-Westafrika 29 freie Fliehkraft 199 freier Lauf 70 freie Rostfläche 112 Frischdampfstrahlpumpe 103 Frischdampfverbrauch 103 führende Räder 68 u.f. Führungsdruck 68, 71 Füllung 147, 148, 205, 213, 214

G

Garbe'sche Reibungscharakteristik Garratt-Lokomotive 149, 170, 394 Garratt-Union 150 Gasgeschwindigkeit 116 Gastemperatur 116, 117 Gasturbinenlokomotive 279 u.f. geführte Länge 68 Gegendampf 230 Gegendruckbremse 230, 397 Gegengewichte 194 Gegengewichtsberechnung 200 gegenläufiges Triebwerk 133, 146 gekreuzte Stangen 206 gekröpfte Achse 193 Gelenklokomotive 45, 46, 71, 132, 149 - 151Generator 277 Georgsmarienhütte 170, 367 Gepäckwagen 295 Gesamtwirkungsgrad der verschiedenen Antriebsarten 21 gesättigter Wasserdampf 127 geschichtete Körper 289, 290 Geschweißter Kessel 185, 402 geschweißter Rahmen 87, 403 Geschwindigkeitszahl 157 gesetzliche Bestimmungen 25 u.f. Getriebe-Dampflokomotive 245-247 Gewichte 289, 290 Gewichte und Maße 285, 286, 304, 305 Gewichtsangaben elektrischer Triebfahrzeuge 266, 267 Gilli-Lokomotive 255, 256 Gleichstrommotor 258, 262 Gleisbogen 30, 32, 38, 70, 83-85 Gleiskrümmung 31, 36, 39, 42 Gleitbahn 192, 193 gleitende Reibung 91, 192, 193 Gleitlager 55 Gliederfahrzeuge 71, 72, 73 Glühfarben 291 Glühkopfmotor 272 Goldküste 29 Gölsdorfachse 71, 72, 79 Gölsdorfsteuerung 207 Golwé-Lokomotive 151 Gondal Railway 172 Gooch-Steuerung 206, 207 Grade von Gleisbögen 57 Grenzsteigung 64 Griechenland 29, 172

Grubenbahnen 29, 51 Grubenlokomotiven 376 Grube Phönix/Thür. 170, 364 Guatemala 29 gummibereifte Wagen 55, 59 u.f., 64, 95 günstigste Geschwindigkeit 101, 131 günstigster mittlerer Kolbendruck 131. 135 günstigste Zugkraft 101, 131 Günther-Meyer-Lokomotive 151 Güterwagen 294-297

H Hafenbahn Kalkutta 168, 357 Haftreibung 59 Haftwert 60 Halberstadt-Blankenburger Eisenbahn-Gesellschaft 168-170 Halbmesser von Gleisbögen 57 Halbtenderlokomotive 99, 172 Handbremse 94 Hauptabmessungen 47, 101, 164 u.f., 268, 282, 292 u.f. Hawaii 29 Hedschas 29 Heise 101, 102 Heißdampf 12, 103, 104, 128-130, Heißdampflokomotiven 99, 104, 110, 114 Heißdampftemperatur 118 Heizer 114 Heizfläche 104 u.f., 156, 157 Heizflächenbelastung 104, 106, 108 u. f., 156, 158, 162 Heizrohre 111, 113 Heizwert 120, 122 Henschel & Sohn 9-16 Henschel-Aufdornstehbolzen 182 Henschel-Bangert-Gestell 76 Henschel-Gelenklokomotive 151 Henschel-Gilli-Lokomotive 255 Henschel-Kesselauflagerung u. - Rückstelly orrichtung 234 Henschel-Patent-Kondenslokomotive 13, 14, 244, 404, 405 Henschel-Lenkgestell 74, 398 Henschel-Mischvorwärmer 189-191. 360

Henschel-Schneebeseitigungsmaschinen 256, 372 Henschel-Schüttelrost 186-188 Henschel-Tross-Stehbolzen 181-184

Henschel-Turbospeisepumpe 191, 405 Henschel-Umsteuerung 228 u.f. Henschel-Vogel-Gestell 73, 75, 76, 78, 80.81 Henschel-Zahnrad-Kupplung der Endachsen 378, 379 Heumann 71, 72, 83 Heusinger-Steuerung 207, 212 Heusinger-Joy-Steuerung 207 Himalayan 29 hin- und hergehende Massen 194, 202. 203 Hochdrucklokomotive 13, 240 u.f. Hochdrucksysteme 242-244 Hochdruckzylinder 131, 143-145 Höchstgeschwindigkeit 30, 133, 198 Höhenlage des Kessels 115 Hohenlimburger Kleinbahn 168 Hohlachse 72, 380 Hohlmaße 286 Hohlwellenantrieb 265 Holland 11, 170 Holzfeuerung 108, 109, 112, 115, 168 - 175Holzkastenkipper 290 Honduras 29 Howe 205 Hudson-Bauart 44 hydraulic mean depth 162 hydraulische Kraftübertragung 275

Ibbenbüren 170, 367 ideeller Drehpunkt 74 Indien 11, 29, 168, 172 Indische Nordwestbahn 172 indirekt wirkende Bremse 97 indizierte Leistung 47, 101, 102, 141, 148, 163 indizierte Zugkraft 47, 65, 101, 102, 131, 163 Indochina 29, 172, 174 Indonesien 11, 29, 172, 366 Indonesische Staatsbahnen 168-174 Industriebahnen 51, 362, 364, 379 Industrielokomotiven 176 innere Steuerung 204, 214 Insel Man 29 Irak 29 Iran 29 Iranische Staatsbahnen 172, 174, 363 Irland 29 ISA-System 302

i-s-Diagramm 408 ISO 302 Italien 11 Izett-Stahl 186

Jamaica 29 Japan 11, 29, 268 Java 29 Javanic-Bauart 45 Jenny Lind-Bauart 44 Joy-Steuerung 207, 209 Jugoslawien 11, 28, 29 Jugoslawische Staatsbahnen 256

K Kanada 29 Kando-Gestell 75, 78 Kando-System 260 Kapspur 29 Karl Schulz-Schieber 220 u.f. Kennlinien feuerloser Lokomotiven Kennlinien von Kraftübertragungsarten 278 Kennwerte von Eisenbahnzügen 298 Kennzeichnung der Lokomotiven 44 - 46Kessel 185, 402 Kesselabmessungen 103 u. f., 179 Kesselanstrengung 107 Kesselauflagerung 234 Kesseldruck 135, 139, 147, 148 Kesseldruckprobe 115 Kesselhöhe 115 Kesselkapazität 158, 163 Kesselrohre 111, 113 Kesselverluste 119 Kesselwirkungsgrad 106, 109, 162 Kiesel, Lok.-Berechnung nach K. 152, 160, 163 Kingan-Ripken-Steuerung 207 Kippwagen 290 Kitson-Meyer 151 Kleinasien 29 Kleinbahnen 168, 356 Klie 107, 117 Klien-Lindner-Hohlachsen 72, 380 Klima-Spurrinnenräumer 256 Klotzbremse 91 Klotzdruck 91, 92 Klotzreibung 91

Knicksicherheit 192 Knorr-Bremse 396 Kohlenstaubfeuerung 13, 239, 381, 395 Kohlenstaubturbine 284 Koksfeuerung 108 Kolbendampflokomotive 18 Kolbendruck 135, 138, 139, 144, 148, 153, 213 Kolbengeschwindigkeit 132, 133, 157 bis 159 Kolbenhub 132, 214 Kolbenschieber 204, 214, 221, 222 Kolbenspeisepumpe 103 Kolbenstange 192, 193 Kolumbien 29, 172, 360 Kondenslokomotive 13, 14, 244, 404, 405, 407 Kopflicht-Scheinwerfer 231 Korea 29 Körpermaße 286 Kother 19, 20, 60, 93, 95 Kräfte am anlaufenden Rad 71 Kraftübertragung 265, 274 Kraftumsteuerung 228, 229 Krauß-Helmholtz-Gestell 73, 75 u. f. Krebstiefe 114 Kreisinhalt 320 u.f. Kreisumfang 320 u.f. Kreuzkopf 192 Kropfachse 193 Krümmungshalbmesser siehe Gleisbogen Krümmungswiderstand 49, 56 Krupp-System 260 Kuhnsche Schleife 213 Kuppelstange 192, 193 Kuppelstangenlager 193 Kupplung 275 Kurveneinstellung 83-86 L Lademaß 36

Lagerreibung 49 La Mont-Kessel 243 Längenmaße 285, 304, 305 La Robla-Bahn 170 Lastenzug 34 Laternen 231, 232 Laufachse 44, 68, 193 Laufgestell 75-82 Laufleistungen 69, 267 Laufwerk 68, 192 Laufwiderstand 49-55 Le Chatelier-Bremse 230

Leerfahrt 110 Leerlaufeinrichtung 220 Leichtbautender 403 Leistung 47, 101, 102, 141, 148, 153, 157, 158, 163 Leistungsangaben elektrischer Triebfahrzeuge 266, 267 Leistung des Elektromotors 263, 264 Leistungseinheit 153, 286 Leistungsgewicht 258 Leistungskurve 101, 102, 141, 148, 158, 163 Leistungslinie für feuerlose Lokomotiven 253 Leitzmann 87 Lenkgestell 73, 398 Lentz-Rateau-Steuerung 208 Lentz-Schwingensteuerung 208 Lettische Staatsbahn 168 Lettland 29 Lichtmaschine 103, 231-233 Lichtraumumgrenzung 37-43 Liechty-Achssteuerung 72, 400 Lima-Lurin-Bahn 172 limited cut-off 152, 223 lineares Voreilen 205, 212, 214 Lipetz 158 Litauen 29 Löffler-Kessel 243 Lokomotiv-Leistungsgewicht 20 Lokomotivwiderstand 49 LON 28 Lorraine-Bauart 45 Lotter-Gestell 75, 78 Lourenco-Marques 172 Lübeck-Büchener Eisenbahn 168 Luftbedarf 122-125 Luftdruckbremse 103, 396 Luftgeschwindigkeit in den Rostspalten 109, 116 Luftgewicht 126 Luftpumpe 103 Luftreifen 55, 59 u.f., 64, 95 Luftsaugebremse 98, 103 Luftsaugeventile 220, 223 Luftüberschuß 116, 121, 124, 125 Luftwiderstand 49, 51, 55 Lüttgerding 87 Luxemburg 11, 29

Madagaskar 29 Malaya 29 Mallet-Lokomotive 149, 170, 174, 394 Mandschurei 11, 29, 268 Maschinenreibung 49 Massenausgleich 194 u. f. Maße und Gewichte 285 u. f. Mastodon-Bauart 45 Marokko 170 Marschwandler 275 Mauritius 29 Mechanische Kraftübertragung 275 Mecklenburg. Friedr.-Wilh.-Eisenbahn 168 Mehrfach-Blasrohr 180 Meier-Mattern-Steuerung 208 Meile 285, 305, 315, 318 Meineke 104 Meineke-Gestell 75, 77 Meineke-Röhrs 106, 119, 136 Meklong Ry 172, 370 Metergewicht 34 Meterspur 29, 41 Metrische Maße 304 u.f. Mexiko 11, 29 Mikado-Bauart 44 Minas del Rif 170 Minimum-Verfahren 83 Mischvorwärmer 103, 189 u. f., 360 Mitteldrucklokomotiven 240 Mittelpommersche Kleinbahn 170 mittlere Heizflächenbelastung 104,106 mittlerer Kolbendruck 135, 138, 139, 144, 148, 153, 213 Modified-Fairlie-Lokomotive 13, 150, 170 Mogul-Bauart 44 Mogyana-Bahn 172 Mohawk-Bauart 44 Mollier-Diagramm 408 Motorenbrennstoffe 274 Motorlokomotiven 51, 282, 376, 377 Motorzugförderung 18, 271 Mountain-Bauart 44 Mozambique 29, 170, 174, 355, 393

N

Muldenkipper 290

Müller 107, 117

Nahost 29 Najorksche Gegengewichtsberechnung 199 Naßdampflokomotive 99,104,107, 110, 114, 157

Müller-Kolbenschieber 220, 221

Neufundland 29 Neu-Seeland 29 Niagara-Bauart 44 Nicken 146 Nicaragua 29 Nicolai-Schieber 220, 221 Niederdruckzylinder 131, 143, 144 Niederlande 11, 170 Niederländische Eisenbahn 170 Nigeria 29 Njassaland 29 Normaldruck 71 Normalkubikmeter 116, 124, 125 Northern-Bauart 44 Norwegen 11, 29 Norwegische Staatsbahn 168

0

Oberschlesien 29 offene Stangen 206 Ölbrenner 235 Ölfeuerung 168—174, 235—238 Ölverbrauch 238 Ölzusatzfeuerung 238 Orientalische Bahnen 256 Österreichische Bundesbahn 115, 256 Österr--Ungarische Monarchie 11 Ottomotor 271 Overland-Bauart 45

P

Pacific-Bauart 44 Pakistan 29 Palästina 29 Panama 29 Paraguay 29, 172 Parana Plantations 172 Passungen 302 Paulista-Bahn 18, 174, 361 Peloponnes-Bahn 172 Pendelstütze 73 Pendelwiege 73 Personenwagen 292 u.f. Peru 29, 172, 370 Pfund, engl. 304, 305, 314 Philippinen 29, 172 Planet-Bauart 44 Plantagenbahnen 174, 356, 366, 370 Pocono-Bauart 44 Polen 29

Porto-Rico 20 Portugal 11, 29, 174 Portugiesische Nordbahn 170 Portugiesisch-Ostafrika 29, 170—174, 355, 393 Portugiesisch-Westafrika 29, 168, 356 Postwagen 295 Potenzen 320 u.f. Prairie-Bauart 44 Preußische Staatsbahnen 12 Prignitzer Eisenbahn-Gesellschaft 170 Protopapadakis 57

Q

Queensland 29 Quelimane 170

Raddruck 33

R

Rahmen 87 Rateau-Steuerung 208 Rauchgase 116, 122, 123 Rauchgasgeschwindigkeit 116 Rauchgasgewicht 117 Rauchgasmenge 116, 122, 123 Rauchgastemperatur 116, 117 Rauchkammer 116 Rauchrohr 111, 113 Raummaße 304, 305 Raumverhältnis der Zylinder 131, 143, 144 Reading-Bauart 44 reduzierte Rostfläche R' 108, 180 Regellichtraum 37 Regelspur 29, 43 Reibung 59 Reibungsbahnen 64 Reibungsgeschwindigkeit 48, 61 Reibungsgewicht 59, 61 Reibungswert 71, 95, 192, 193 Reibungszahl 91 Reibungsziffer 59 Reibungszugkraft 48, 60, 61 Reichsbahn siehe Deutsche Reichsbahn Renaud-Steuerung 208 reziproke Werte 320 u.f. Rhodesien 29, 174 Rhodesische Staatsbahn 174, 393 Richtkraft 68, 71 Riggenbach-Bremse 230, 397

Rio Grande do Sul 170, 394 Röckl'sche Formel 56 Roddergrube 170 Rohrheizfläche 106, 113 Rohrkennziffer 111, 113, 162 Rohrquerschnitt 113 Rollböcke 53 rollende Reibung 49, 91, 92 Rollwiderstand 49 Rosin und Fehling 124, 125 Rostanstrengung 107 Rostbelastung 108, 120 Rostbeschickung 109, 188 Rostfläche 106 u. f., 112, 114, 180 Roststab 114 Rosttemperatur 116 Roy'sches Verfahren 83, 84 Rückenschwächung des Spurkranzes 70 Rückstellvorrichtung 73, 234 Rumänien 11 29 Rumänische Staatsbahnen 14, 282,406 Rußland 11, 29

\mathbf{s}

Sachsenwerk 168 Salvador 29 San Domingo 29 Sandstreuer 60 San Paulo und Minas Ry Co 174 Santa Fé-Bauart 45 Sättigungstemperatur des Heißwassers 252 Saugluftbremse 98 Saugzuganlage 179 Sauthoff 52 Schack'sche Formel 117 schädlicher Raum 204, 205 Schaltbilder von Motoren 259 Schamotteauskleidung 235 Scheinwerfer 231 Schieberellipse 215 Schiene 32, 33 Schienengewicht 32, 33 Schienenhöhe 32, 33 Schienenprofile 32 Schienentiberhöhung 30 Schlepplast 53, 62, 65-67, 177, 254 Schlepplasten-Diagramm 48, 65, 66 Schlepptender-Lokomotive 99, 164-167, 172-175 Schlickscher Ausgleich 146

Schlingern 146 Schmalspur 28, 29, 36, 41, 42, 56 Schmelzpunkt 287, 288 Schmidt-Kessel 242 Schmierölverbrauch 230 Schneebeseitigungsmaschinen 256.372 Schnelldampferzeuger 242 Schnellfahrlokomotive 133 Schornstein 179, 180 Schüttelrost 186 Schütthöhe 115 Schwartzkopff-Eckhardt-Gestell 75,77 Schweden 29, 172, 366 Schweiz 11, 29 Schweizerische Bundesbahnen 18, 256 Schwellenentfernung 33 Seitenwind 50 Selkirk-Bauart 45 Serbien 11 Serienlokomotivtypen 12, 176, 365, Siam 11, 29, 172, 370 Siamesische Staatsbahn 170, 172, 282, 405 Sibirien 29 Sicherheit gegen Entgleisung 68 Sierra-Bauart 45 Sierra Leone 29 Signalordnung 25 Single Driver-Bauart 44 Sizilien 29 Sorocabana-Bahn 168, 174 Southern Pacific-Bauart 45 Spanien 11, 29, 170 Spanische Kolonien 29 Spanische Nordbahn 174 Speiche 193 Speicherfahrzeug Dampf siehe feuerlose und Gilli-Lokomotive elektrisch 267 Speisepumpe 103, 191, 405 Speisewasservorwärmer 189 Speisewasservorwärmung 106, 109, 111, 189 spezifische Brennstoffkosten 284 spezifischer Dampfverbrauch 104, 105, 147, 161 spezifisches Gewicht 127, 252, 287, 288 spezifisches Volumen 160, 287, 288 spezifisches Zuggewicht 62 u. f. spezifische Wärme der Rauchgase 121 Spießgang 69, 70 Spindelbremse 94 Spurerweiterung 31, 32

Spurkranzabnutzung 69 Spurkranzschwächung 70 Spurkranzspiel 84 Spurweite 28, 29 Spurspiel 70, 84 Stahlgußrahmen 87 Stangenantrieb 265 Stangenlager 192 statische Einstellung 69 Stauraum-Tabelle 289, 290 Stehbolzen 181-184 Steigung 64 Steigungswiderstand 49, 55 Steinen, Abmessungen von 288 Steinkohle 108-110, 112, 114, 115, 120 - 124Steinspringen 213 Stellungsbild nach Roy und Vogel 83 u.f. Stephenson-Steuerung 205, 206 Steuerung 204 u.f. Stoker 108, 188 störende Bewegungen 49, 146 Strahl 49, 52, 107, 135, 137, 163, 180 Strahlsche Kurve 101, 102 Stromabnehmer-Spannung 257 Stromlinienform 55 Stromlinien-Verkleidung 50 Stromsysteme 257 Stugfeuerung 239, 240, 395 Stundenleistung 263,264,266,269,270 Südafrika 11, 29, 168, 355 Südafrikanische Staatsbahnen 170-175, 268, 374, 395, 404, 407 Sudan 29 Süddeutsche Eisenbahn-Ges. 168 Südharz-Eisenbahn 170 Sulzer-Kessel 243 Sumatra 168 Super Mountain-Bauart 45 s-V-Diagramm 48, 61, 65, 66 Swatow Chow-Chow Ry 168 Switcher Bauarten 44, 45 Syrien 29 Syromiatnikoff'sche Gleichung 117

Tagebau-Lokomotiven 268, 364, 374, 375 Tanganjika 29 Tangentialdruckdiagramm 145 Tasmanien 29 Tatzenlagermotor 265, 283

Technische Einheit (TE) 26, 37 Technische Vereinbarungen 26 Tender 45, 193 Tender-Lokomotive 99, 166-172 Texas-Bauart 45 thermischer Wirkungsgrad 106, 273 Togo 29 Toleranzen 302, 303 Toleranz-Vorschriften 26 Torf 109, 112, 114 tote Lasten 87 Tragfeder 87 Trägheitswiderstand 49 Transitwagen 37 Treibstange 192, 193 Treibstangenlager 192, 193 Treibraddurchmesser 132-135, 214, 265 Treibzapfen 193 Trick-Steuerung 206 Triebfahrzeug 17 Triebtender 13, 46 Triebwagen 17, 51 Triebwerk 131, 192 Triebwerkbremse 91, 98, 230, 397 Triebzug 17 Trinidad 29 Trockendampf-Abraumlokomotive Trofimoff-Schieber 220, 222 Tross-Henschel-Stehbolzen 181 ff. Tschechoslowakei 29 Tungpu-Ry 168, 172, 174, 368 Tunis 29 Turbinenlokomotive 247 Turbogenerator 231 Turbospeisepumpe 191, 405 Türkei 11, 29, 170, 171 Türkische Staatsbahn 170, 174, 363, Typenskizzen 382 u. ff., 407. Ti 128-130, 161

überhängende Massen 68, 72 Überhitzerheizfläche 110, 111 überhitzter Wasserdampf 128-130 Uberhitzung 105, 111, 112, 118, Überhöhung 30 Uebelacker 83 Uganda 29 Umdrehungszahl 133, 134, 147, 148 Umformerlokomotiven 259, 260

Umgrenzungsprofil 37--43 Unikehrenden-Abstand des Überhitzers 112, 114 umlaufende Massen 93, 194 u.f. Umlauf vorrichtungen 220 Ungarn 11, 29 Union-Bauart 45 Union Pacific-Bauart 45, 46 Unified Screw Thread 302 Unterdruck 116 Unterdruck-Kondensation 240, 244 Unterharzer Berg- und Hüttenwerke Uruguay 29, 174, 357 USA 28, 29, 33, 43-46, 54, 57, 88, 90, 152, 265, 279, 284

V

Västergötland-Göteborg-Bahn 172, 366 Velox-Kessel 244 Venezuela 29 Ventilsteuerung 208 Vera Cruz 29 Verbrennungskammer 107, 164-166, Verbrennungsmotor 271-274 Verbrennungsverluste 116, 120 Verbrennungsvorgang 122-125 Verbund-Kolbenspeisepumpe 103 Verbundlokomotive 131, 143-145, 164, 170-174, 218 Verdampfungsheizfläche 104, 156, 157 Verdampfungsoberfläche 114 Verdampfungswärme 127 Verdampfungsziffer 109, 239 Verdichtung 204, 205, 273 Vereinheitlichung der Steucrung 213, Verein Mitteleuropäischer Eisenbahnverwaltungen 26 Verkehrslasten 34 Verschiebebewegung 110 Verschiebelokomotive 282 verstellbare Blasrohrköpfe 180 Verzögerung 95, 96 Vierlinglokomotive 131, 146, 170, 174, 219 Vierfontain 168, 355 Vierzylinder-Verbundlokomotive 131, 144, 145, 164, 170-174, 218 Vogelsche Kennzahl 68 Vogelsches Verfahren 85

Volumen 287, 288 Vorausströmung 204, 205 Voreinströmung 205 Vorwärmer 189, 401 Vorwärmung des Speiscwassers 106, 109, 111, 189

Wagen-Begrenzung 37 u.f.

Wagenwiderstand 52

W

Waldbahnen 54 Walschaert-Steuerung 212 Wälzlager 50, 55 Wanddicke der Dampfzylinder 193 Wandler 275 Wanken 146 Wärmeabstrahlung der Kesseloberfläche 118, 119 Wärmebilanz 118 Wärmedurchgangszahl 118 Wärmeinhalt 128-130 Wärmeinhalt der Rauchgase 121 Wärmeleitzahl 118 Wärmemaße 291 Wärmetafel 127 u. f., 408 Wärmeübergangszahl 117, 118 Wärmeübertragung 116 u.f. wasserberührte Heizfläche 104, 106, 107 Wasserdampf 127-130 Wasserkammer 104, 107 Wasserraum 114 Wasserstand 114, 115 Wassersteg 114 Wasserumlaufrohr 107 Wechselstrom 257 u.f. Wechselstromlokomotive 261, 268 Weichheit der Feder 89 Wellrohr-Feuerbüchse 184 Weltzeit 319 Werksbahnen 28, 29 Werkstoff-Beanspruchungen 300 Wertigkeit der Heizfläche 104, 106 Wheeler-Bauarten 44, 45

Widerstandsformeln 49 u. f.
Widerstandsmoment von Schienen 32, 33
Wind 50, 51
Winkelhebelsteuerung 207
Wirkungsgrade 20—23, 100, 106, 109, 162, 241, 276—278
Wogen 146
Wurfhebelbremse 94
Wurzeln 320 u. f.

Y

Yellowstone-Bauart 46 Young-Steuerung 207, 211

Z

Zahnradgekuppelte Endachscn 72, 370, 378, 379 Zahnradbahn 55, 64 Zahnstangenstrecken 39, 40 Zara-Gestell 73 Zeitmaße 319 Zeunerkreis 216 Zollmaße 304, 305 u.f. Zucken 146 Zugförderung 18 Zugförderungssysteme 19, 23 Zuggewicht 62 Zugkraft 47, 48, 59, 60-63, 67, 101, 102, 131, 132, 142, 154 n.f., 158, 163 u.f., 254, 264, 268, 270, 282 Zugkraftbereich 137-139, 145 Zugkraftkennziffer 131 Zugkraftkurve 48, 61, 67, 101, 102, 142, 154, 155, 158, 163, 264, 270 Zugwiderstand 49 u.f. Z-V-Diagramm 65, 67 Zwillinglokomotive 131, 145-148, 194 Zylinderanordnung 145

Zylinderdurchmesser 131, 136, 140

Zylinder-Raumverhältnis 131, 143, 144

Zylinder-Ölverbrauch 230

Zylinder-Verluste 136

Abkürzungen

- BO = Eisenbahn-Bau- und Betriebsordnung vom 17. Juli 1928, Ausgabe vom 1. März 1943 unter Berücksichtigung der bis zum 4. Februar 1943 eingetretenen Änderungen.
- TV = "Technische Vereinbarungen über den Bau und die Betriebseinrichtungen der Haupt- und Nebenbahnen" vom 1. Dezember 1930, herausgegeben vom Verein Mitteleuropäischer Eisenbahnverwaltungen.
- LON = "Deutsche Lokomotiv-Normen", aufgestellt vom Allgemeinen Lokomotiv-Normenausschuß, herausgegeben als Teilgruppe der Deutschen Industrie-Normen (DIN)

fb = feuerberührt

wb = wasserberührt

SO = Schienenoberkante

WS = Wassersäule

QS = Quecksilbersäule

lbs. = englische Pfund (Mehrzahl)

atii = Atmosphäre Überdruck in kg/cm²

ata = Atmosphäre absolut in kg/cm²

PS = Pferdestärke

HP = horsepower

sec = Sekunde

1 Hz = 1 Hertz = 1 Periode/sec

Nın³ = Normalkubikmeter nach DIN 1871

Zeichen für Maßeinheiten nach DIN 1301

BILDTAFELN

HENSCHEL-LOKOMOTIV-TASCHENBUCH 1952

Herausgeber: Henschel & Sohn GmbH., Kassel Manuskript und Bearbeitung: Obering. Dr.-Ing. Kurt Ewald Gestaltung: Carl F. Ronsdorf

Bild 222. Naßdampf-Zwilling-Verschiebe-Tenderlokomotive der Eisenbahnen von Portugiesisch-Ostafrika (Mozambique) Kapspur

Hauptabmessungen: Nr. 30 der Zahlentafel auf Seite 170

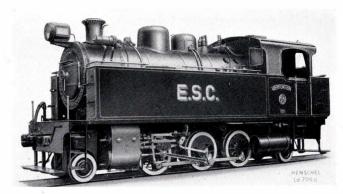


Bild 223. $Na\beta dampf\text{-}Zwilling\text{-}Tenderlokomotive für ein Kraftwerk in Südafrika$ Kapspur

Hauptabmessungen: Nr. 13 der Zahlentafel auf Seite 168

Bild 224. Naßdampf-Zwilling-Tenderlokomotive der Amboim-Bahn (Portugiesisch-Westafrika)

> 600 mm Spur Holzfeuerung

Hauptabmessungen: Nr. 28 der Zahlentafel auf Seite 168

Bild 225. Heißdampj-Zwilling-Güterzuglokomotive für Kleinbahnen

750 mm Spur

Hauptabmessungen: Nr. 51 der Zahleutafel auf Seite 174

HENSEHEL Ld 4520

Bild 226. Naβdampf-Zwilling-Halbtenderlokomotive für Feld- und Plantagenbahnen 600-1-750 mm Spur

Hauptabmessungen: Nr. 1 der Zahlentafel auf Seite 172

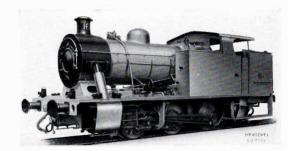


Bild 227. Naßdampf-Zwilling-Tenderlokomotive der Hafenbalm Kalkutta 1676 mm Spur

Hauptabmessungen: Nr. 10 der Zahlentafel auf Seite 168

Bild 228. Heißdampf-Zwilling-Güterzuglokomotive der Staatsbalmen von Uruguay Regelspur, Ölfenerung Beugniot-Endgestell

Hauptabmessungen; Nr. 48 der Zahlentafel auf Seite 174

Bild 229. Heißdampf-Drilling-Gitterzuglokomotive Serie 11 der Bulgarischen Staatsbahnen

Regelspur

Hauptabmessungen: Nr. 56 der Zahlentafel auf Seite 174

Bild 230. Heißdampf-Drilling-Gebirgs-Schnellzuglokomotive Serie 03 der Bulgarischen Staatsbahnen Regelspur

Hauptabmessungen: Nr. 41 der Zahlentafel auf Seite 174

Bild 231. Heißdampf-Zwilling-Güterzuglokomotive Reihe 42 der Deutschen Bundesbahn Regelspur

Ausführung mit Brotan-Kessel

Hauptabmessungen der Regelausführung: Nr. 13 der Zahlentafel auf Seite 164 Typenskizze auf Seite 388

Bild 232. Heißdampf-Zwilling-Tenderlokomotive für Verschiebeund Giterzugdienst, Reihe 82 der Deutschen Bundesbahn

Regelspur

Beugniot-Endgestelle, Geschweißter Rahmen, Geschweißter Kessel Hauptabmessungen: Nr. 29 der Zahlentafel auf Seite 166 Typenskizze auf Seite 384

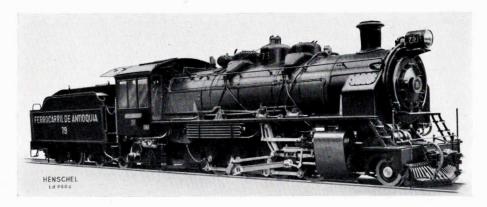


Bild 233. $Hei\beta dampf$ -Zwilling- $G\ddot{u}terzug$ -Lokomotive der Ferrocarril

de Antioquia, Columbien

914 mm Spur, Ölfeuerung, Außenrahmen

Hauptabmessungen: Nr. 24 der Zahlentafel auf Seite 172

Die Lokomotive ist mit Henschel MVC-Mischvorwärmer ausgerüstet.

Vorwärmerkammern beiderseits der Rauchkammer, Henschel-Kreiselpumpe vorn unterhalb der Rauchkammer-Stirnwand ersichtlich.

Vgl. Textseite 189, 191

Bild 234. Heißdampf-Zwilling-Güterzuglokomotive der Brasilianischen Zentralbahn
1600 mm Spur, Verfeuerung von brasilianischer Nationalkohle

Hauptabmessungen: Nr. 58 der Zahlentafel auf Seite 174:

Bild 235. Heißdampf-Drilling-Güterzuglokomotive der Paulista-Balm (Brasilien)

Meterspur, Holzfeuerung

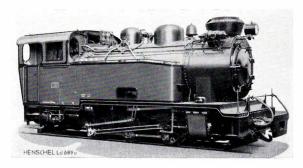


Bild 236. 350 PS-Heißdampf-Zwilling-Tenderlokomotive für den Braunkohlenbergbau 900 nm Spur, Braunkohlenbrikett-Feuerung

Hauptabmessungen: Nr. 10 der Zahlentafel auf Seite 176

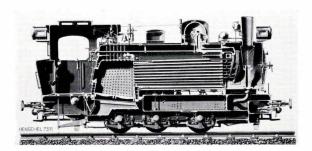


Bild 237. Schnitt durch eine schmalspurige Heißdampf-Zwilling-Tenderlokomotive für Industriebahnen

Hauptabmessungen: Nr. 9 der Zahlentafel auf Seite 176

Bild 238. Heißdampf-Zwilling-Schnellzuglokomotive Reihe 46 der Türkischen Staatsbahnen Regelspur Hauptabmessungen: Nr. 31 der Zahlentafel auf Seite 174



Bild 239. Heißdampf-Zwilling-Güterzuglokomotive der Staatsbahnen von Iran Regelspur, Ölfeuerung Hauptabmessungen: Nr. 19 der Zahlentafel auf Seite 172

Bild 240. Heißdampf-Zwilling-Personenzug-Tenderlokomotive der Finnischen Staatsbahnen 1524 mm Spur, Ölfeuerung Hauptabniessungen: Nr. 21 der Zahlentafel auf Seite 168

Bild 241. Trockendampf-Doppelzwilling-Gelenk-Tagebaulokomotive Bauart Henschel der Grube Phönix/Thirringen

900 mm Spur, Braunkohlenbrikett-Feuerung Hauptabmessungen: Nr. 49 der Zahlentafel auf Seite 170

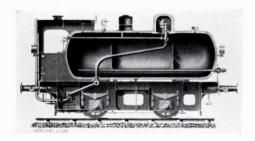


Bild 242

Schnitt durch eine feuerlose Lokomotive

Siehe Textseite 250

Bild 243. Naßdampf-Zwilling-Tenderlokomotive gedrängter Bauart für Industriebahnen Regelspur

Hauptabmessungen: Nr. 3 der Zahlentafel auf Seite 168

Beispiele von Henschel-Serientypen

Zur Zahlentafel auf Seite 176

Bild 244
Schmalspurige
NaßdampjTenderlokomotive
(Baulokomotive)

Bild 245

Regelspurige Naßdampf-Tenderlokomotive

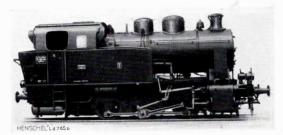


Bild 246

Regelspurige Naßdampj-Tenderlokomotive

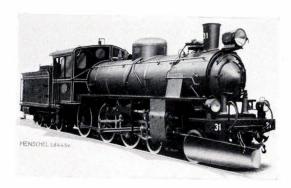


Bild 247. $Hei\beta dampf$ -Zwilling-Personenzuglokomotive der Bahn V $\ddot{a}sterg\ddot{o}tland$ - $G\ddot{o}teborg$ (Schweden) 891 mm Spur

Hauptabmessungen: Nr. 7 der Zahlentafel auf Seite 172

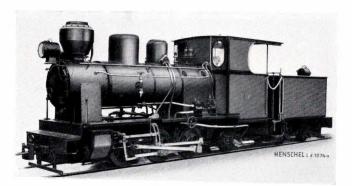


 Bild 248. Naßdampf-Zwilling-Lokomotive für eine Plantagenbahn in Indonesien 600 mm Spur, Ölpalmkernschalen-Feuerung Hauptabmessungen: Nr. 2 der Zahlentafel auf Seite 172

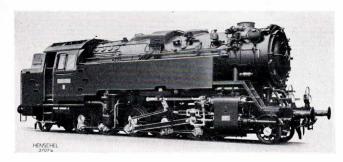


Bild 249. Heißdampf-Zwilling-Tenderlokomotive für schweren Verschiebe- und Streckendienst Regelspur

Hauptabmessungen: Nr. 45 der Zahlentafel auf Seite 170

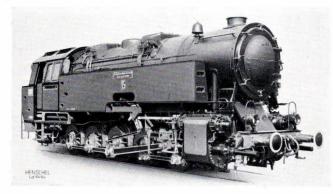


Bild 250. Heißdampf-Zwilling-Tenderlokomotive für schweren Verschiebe- und Streckendienst Regelspur Beugniot-Endgestelle

Hauptabmessungen: Nr. 42 der Zahlentafel auf Seite 170

Bild 251. Heißdampf-Zwilling-Schnellzuglokomotive der Chilenischen Staatsbahnen 1676 mm Spur Hauptabmessungen: Nr. 44 der Zahlentafel auf Seite 174

Bild 252. Naßdampf-Zwilling-Güterzuglokomotive der Tungpu-Bahn (China) Hauptabmessungen: Nr. 46 der Zahlentafel auf Seite 174

Meterspur

Bild 253. Heißdampf-Zwilling-Güterzuglokomotive der Chekiang-Kiangsi-Bahn (China) Hauptabmessungen: Nr. 29 der Zahlentafel auf Seite 172

Regelspur

Bild 254. Heißdampf-Zwilling-Personenzug-Tenderlokomotive Elna-Type 5

Regelspur
Zu Zahlentafel auf Seite 178

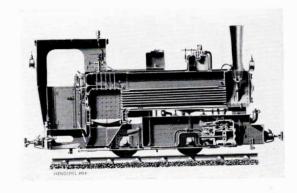


Bild 255. Schnitt durch eine Henschel-Baulokomotive Zu Zahlentafel auf Seite 176

Bild 256. Heißdampf-Zwilling-Vorortzug-Lokomotive der Meklong-Bahn (Siam) Meterspur, Holzfeuerung Hauptabmessungen: Nr. 9 der Zahlentafel auf Seite 172

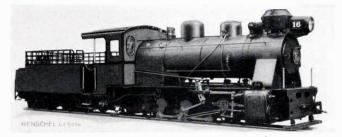
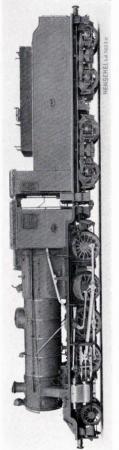



Bild 257. E-Naßdampf-Zwilling-Lokomotive für eine Plantagenbahn in Übersee 700 mm Spur, Holzfeuerung Hauptabmessungen: Nr. 45, Seite 174 Zahnradantrieb der Endachsen

Bild 258. Heißdampf-Zwilling-Güterzug-Lokomotive für Peru Hauptabmessungen: Nr. 23, Seite 172 914 mm Spur, Ölfeuerung

Regelspur, Ölfeuerung Bild 259. Heißdampf-Zwilling-Güterzug-Lokomotive der Ägyptischen Staatsbahnen Hauptabmessungen: Nr. 18 der Zahlentafel auf Seite 172

1: Nr. 46 Seite 170

Zu Textseite 256

Bild 261

Henschel - Klima-Schneepflug

für Regelspur

Für Schnechöhen bis 1,5 m. Ausschwenkbare Seitenflügel gestatten eine Verbreiterung des Durchgangprofils auf eine Rüumbreite von 4100 mm. Verstellbare Schaufelbleche ermöglichen Schneeräumung bis dicht über SO. Betitigung durch Druckluft vom Bedienungsstand aus.

Günstigste Räumgeschwindigkeit, je nach Schneehöhe, etwa 50 km/h,

Bild 262

Schneeräumer mit ausgeschwenkten Seitenflügeln, in Fahrtrichtung gesehen.

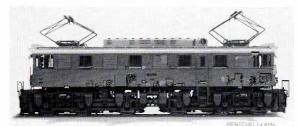
Dient zum Nachräumen und Erweitern der von der Schneeschleuder gebahnten Fahrrinne bis 5 ½ m Breite.

Bild 263 Sechsachsige Schneeschleudermaschine der Deutschen Bundesbahn

Bild 264. Elektrische Personen- und Güterzuglokomotive Reihe E 44 der Deutschen Bundesbahn Hauptabmessungen: Nr. 1, Seite 268 Typenskizze Seite 392

Bild 265. Elektrische Schnellzuglokomotive Reihe E 05 der Deutschen Reichsbahn Regelspur, Wechselstrom Hauptalmessungen: Nr. 2. Seite 268

Elektrische Schnellzuglokomotive Reihe E 19 der Deutschen Bundesbahn Regelspur, Wechselstrom Hauptabmessungen: Nr. 3, Seite 268 Typenskizze Seite 392


Bild 266

Elektrische Personen- und Güterzuglokomotive Klasse 1 E der Südafrikanischen Staatsbahnen Kapspur, Gleichstrom Hauptabmessungen: Nr. 11 der Zahlentafel auf Seite 268

Bild 267

Bild 268

Elektrische Gitterzuglokomotive der Chilenischen Staatsbalmen Hauptabmessungen: Nr. 17, Seite 268 1676 mm Spur, Gleichstrom

Bild 269. Elektrische 75 t-Tagebaulokomotive Hauptabmessungen: Nr. 6, Seite 268 900 mm Spur, Gleichstrom

Bild 270. Elektrische BoBoBo-Tagebaulokomotive von 120 t Dienstgewicht, Einheitsbauart EL 10 900 mm Spur. Gleichstrom Hauptabmessungen: Nr. 8 der Zahlentafel auf Seite 268

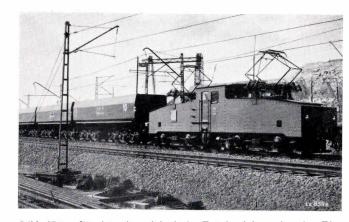
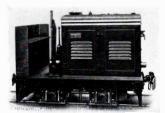



Bild 270a. Regelspurige elektrische Tagebaulokomotive der Einheitsbauart EL 2 im Betrieb Gleichstrom

Hauptabmessungen: Nr. 9 der Zahlentafel auf Seite 268

Henschel-Motor-Getriebe-Lolsomotiven

Siehe Zahlentafel auf Seite 282

600÷700 nm Spur

Bild 271. Type DG 13 als Baulokomotive

600 mm Spur

Bild 272. Type DG26 als Grubenlokomotive

Regelspur

Bild 273. Type DG 39

Dieselhydraulische Henschel-Lokomotiven

Hauptabmessungen: Nr. 9 der Zahlentafel auf Seite 282

Bild 274. 200 PS-Type DH 200 für Verschiebe- und Streckendienst Regelspur

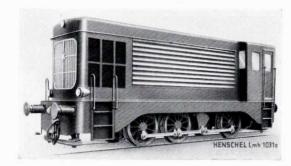


Bild 275. Dieselhydraulische 380 PS-Lokomotive der Ägyptischen Staatsbahnen Regelspur Hauptabmessungen: Nr. 21 der Zahlentafel auf Seite 282

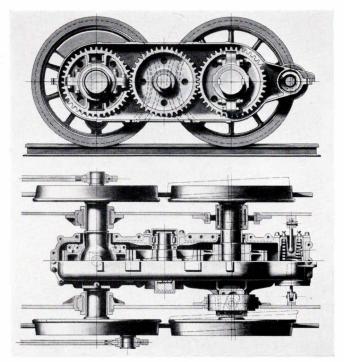


Bild 276. Zahnrad-Kupplung der Endachsen Bauart Henschel

Die Endachse wird von der benachbarten Kuppelachse mittels Zahnrad-Übertragung angetrieben. Antrieb staubdicht gekapselt, läuft in Öl. Antrieb Gehäuse als "Deichsel" ausgebildet, die um die kugelförnig verdickte Mitte der Kuppelachswelle aussehwenkt. Zahnrad-Endachse mithin in ihrer Wirkung einer Bissclachse gleichzusetzen (Drehpunkt in Mitte Kuppelachswelle). Anlaufwinkel klein, ruhiger Lauf durch Rückstellvorrichtung. Aus konstruktiven Gründen Winkelausschlag der Deichsel auf etwa $\pm 6^\circ$ begrenzt.

Innenralmen für 1000 mm Spur und darüber, Außenrahmen für Spurweiten unter 1000 mm. Gewichtserhöhungen (insbes. bei Innenrahmen) geringer als bei Klien-Linder-Hohlachse nach Bild 279.

Vgl. Textseite 72

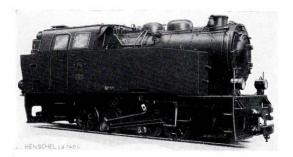


Bild 277. Naßdampf-Zwilling-Tenderlokomotive für eine Industriebahn

1000 mm Spur, Zahnradantrieb der Endachsen

Hauptabmessungen: Nr. 24 der Zahlentafel auf Seite 168

Die Lokomotive durchfährt Gleiskrümmungen bis herunter zu 15 m Halbmesser, die ohne Spurerweiterung verlegt sind.

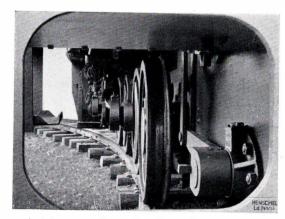


Bild 278. Lokomotive in der 15 m-Kurve

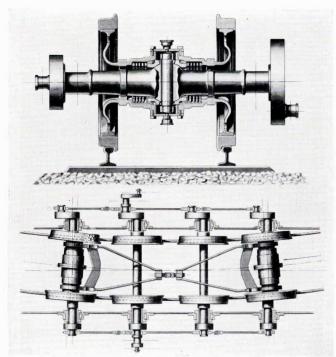


Bild 279

Zu Textseite 72

Die Klien-Lindner-Hohlachse am Beispiel einer D-Lokomotive

Bei der Hohlachse sitzen — entgegen der üblichen Ausführung — die Radkörper nicht fest auf der Achswelle. Die Achswelle ist für sich im Lokomotivrahmen gelagert und wird mittels der Kurbein in Undrehung versetzt. Diese "Kernachse" wird ringförmig von der Hohlachse umhüllt, die mit den beiden Radkörpern zu einem Gebilde vereinigt ist. Die Hohlachse lagert derart auf der mittleren kugelförmigen Verdickung der Kernachse, daß sie sich auf dieser innerhalb eines gewissen Winkelausschlages nach allen Seiten drehbar einstellen kann. Außerdem ist ihr Drehpunkt parallel zur Kernachse estlich verschiebbar. Durch Rückstellfedern wird sie in geradem Gleis in Mittelstellung gehalten. Die Umdrehung der Kernachse wird durch den Mitnehmerbolzen auf die Hohlachse umd damit die Riider übertragen.

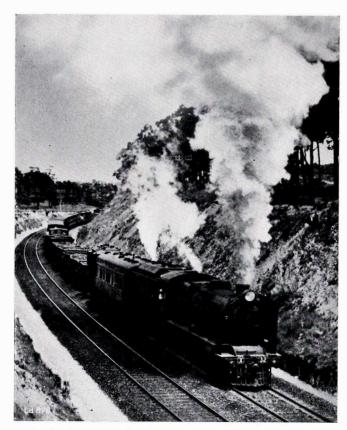


Bild 280. Lokomotiv-Kohlenstaubjeuerung in Australien

Güterzug der Victorian Railways mit kohlenstaub-gefeuerter Lokomotive der Klasse "X". Die Ausrüstung zur Kohlenstaubfeuerung wurde 1948 von Henschel & Sohn geliefert. Zu Textseite 239

Einheitslokomotiven der Deutschen Reichsbahn

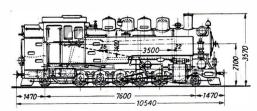
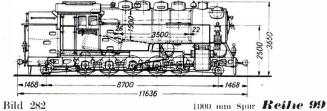
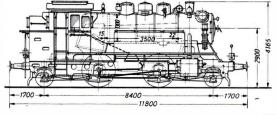




Bild 281

750 mm Spar Reilie 99

Reihe 71 Bild 283

und der Deutschen Bundesbahn

Hauptabmessungen auf Zahlentafel 27, Seite 166

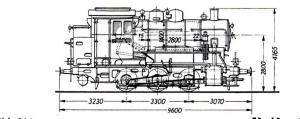
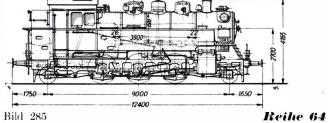
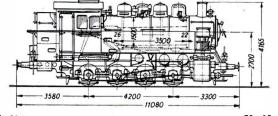
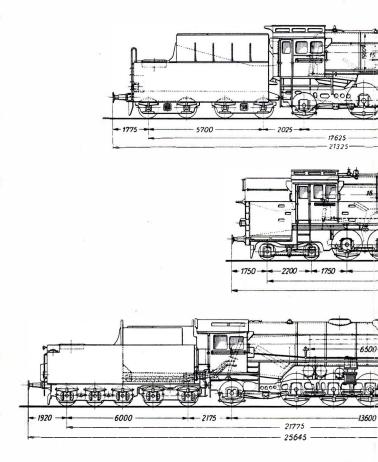



Bild 284

Reihe 89



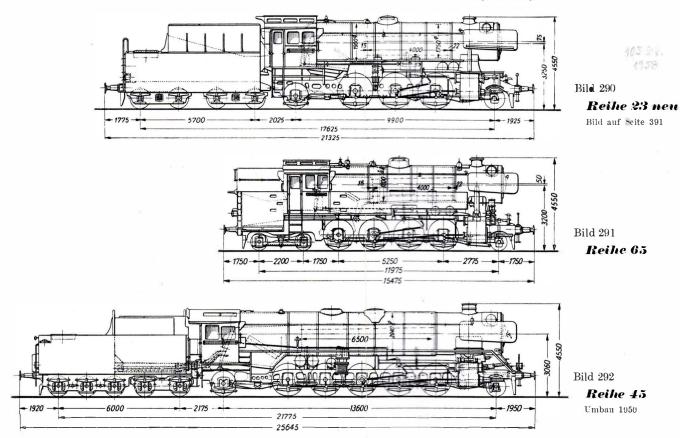

Bild 286

Reihe 81

Einheitslokomotiven

der Deutschen Bundesbahn Zu Seite 166 14050 Reihe 66 (Entwurf) Bild 287 11575 Bild 288 Reilie 83 (Entwurf) 6600 14060-Bild 289 Reihe 82

Einheitslokomotiven der Deutschen Bund


Einheitslokomotiven der Deutschen Bundesbahn

ahn

twurf)

wurf)

Hauptabmessungen auf Zahlentafel 27, Seite 164-167

385

Einheitslokomotiven der Deutschen Reichsbahn und der Deutschen Bundesbahn

Hauptabmessungen auf Zahlentafel 27, Seite 166

Einh

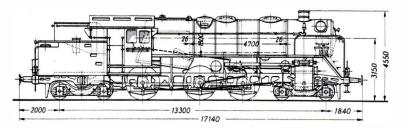


Bild 293

Reihe 62

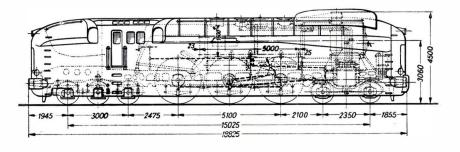


Bild 294

Reilie 61 [61002]

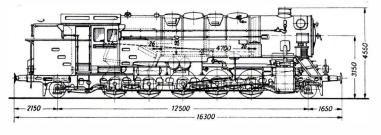


Bild 295

Reihe 85

bahn

Seite 166

Einheitslokomotiven der Deutschen Reichsbahn und der Deutschen Bundesbahn

Hauptabmessungen auf Zahlentafel 27, Seite 164 und 166

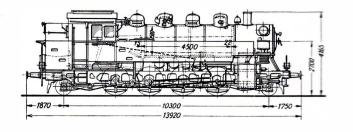


Bild 296

Reihe 86

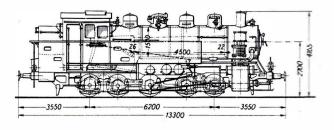


Bild 297

Reihe 87

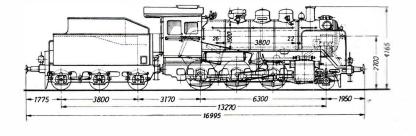



Bild 298

Reilie 24

Einheitslokomotiven der Deutschen Reichsbahn und der Deutschen Bundesbahn

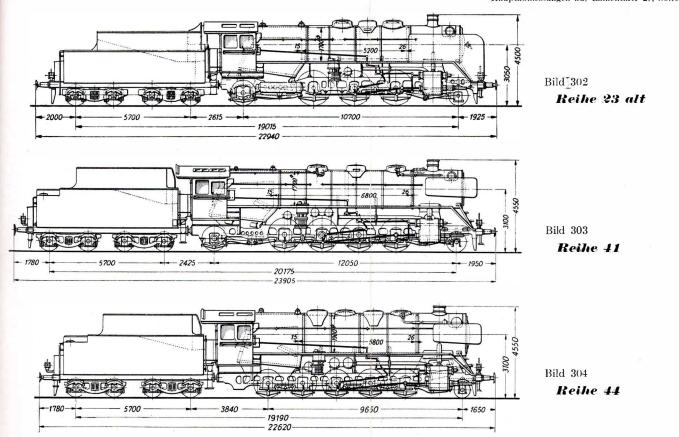
Hauptabmessungen auf Zahlentafel 27, Seite 164 und 166

Einh

*

- 1780

1

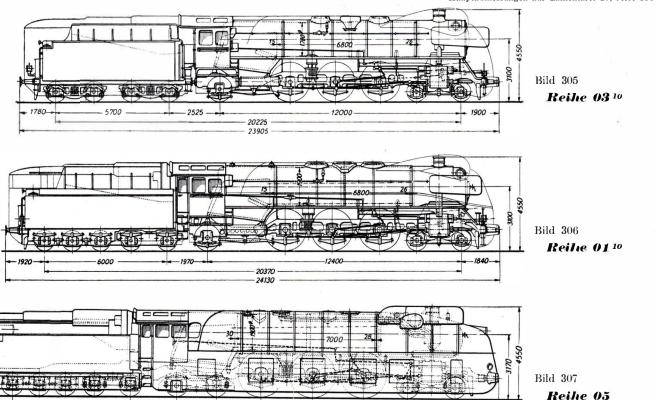

*

ahn

und 166

Einheitslokomotiven der Deutschen Reichsbahn und der Deutschen Bundesbahn

Hauptabmessungen auf Zahlentafel 27, Seite 164



Einheitslokomotiven der Deutschen Reichsbahn und der Deutschen Bundesbahn

Hauptabmessungen auf Zahlentafel 27, Seite 164

-2090 -

Ursprungszustand

13900

22075 26265

390

2100

5900

sbahn

10

10

nd

1920 - 6000 - 1925 - 27450 26520 - 27450

Bild 308

Reilie 06

Hauptabmessungen Nr. 8 der Zahlentafel auf Seite 164

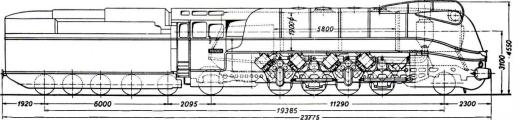


Bild 309

Reihe 19

Zu Textseite 249

HENSCHEL Id 991n

Bild 310

 $Hei\beta dampf\hbox{-}Zwilling\hbox{-}Person enzuglokomotive$

Reihe 23

der Deutschen Bundesbahn

Hauptabmessungen: Nr. 10 der Zahlentafel auf S. 164 Typenskizze auf Seite 385

> Regelspur Geschweißter Kessel Geschweißter Rahmen Rahmenloser Leichtbau-Tender

Bauliche Einzelheiten auf Seite 402 und 403

Elektrische Lokomotiven der Deutschen Bundesbahn für Wechselstrom 15000 V, 16 1/3 Hz

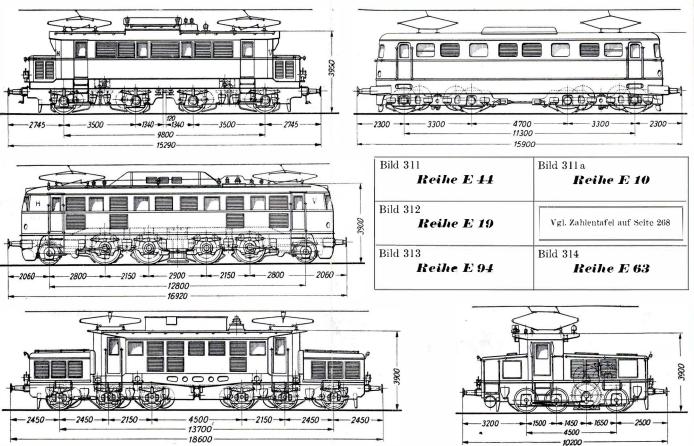
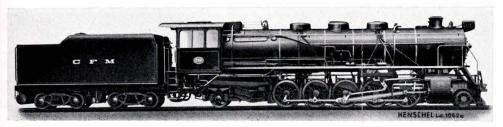


Bild 313 Hauptabi

Hz

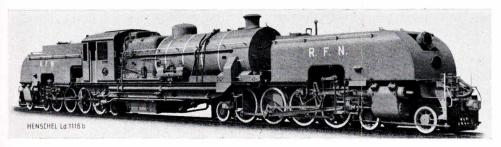
2300


e 268

0000

Bild 315. Heißdampf-Zwilling-Giiterzug-Lokomotive Klasse 19 der Rhodesia Railways Hauptabmessungen: Nr. 37 der Zahlentafel auf Seite 174

Kapspur


Bild 316

Heißdampf-Zwilling-Giterzug-Lokomotive der Eisenbahnen von Mozambique (Portugiesisch Ostafrika)

Kapspur

Hauptabmessungen:

Nr. 55 der Zahlentafel auf Seite 174

Bild 317

Heißdampf-Doppelzwilling-Güterzug-Tenderlokomotive Bauart Beyer-Garratt der Brasilianischen Nordwestbahn

Meterspur, Ölfeuerung

Hauptabmessungen:

Nr. 58 der Zahlentafel auf Seite 170

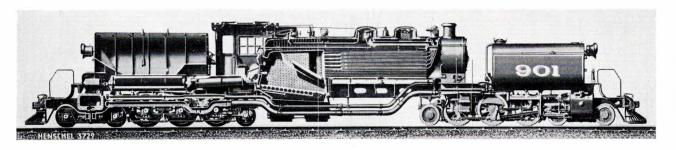


Bild 318. Heißdampf-Doppelzwilling-Tenderlokomotive Bauart Garratt für Personen- und Güterzugdienst der Viaçao Ferrea do Rio Grande do Sul (Brasilien)

Meterspur

Hauptabmessungen: Nr. 54 der Zahlentafel auf Seite 170

Über die Bauart Garratt siehe Seite 149

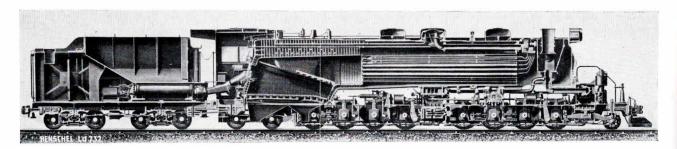


Bild 319. Heißdampf-Doppelzwilling-Güterzuglokomotive Bauart Mallet der Brasilianischen Zentralbahn

Meterspur

Bil

Hau

Bild

Hauptabmessungen: Nr. 60 der Zahlentafel auf Seite 174

Über die Bauart Mallet siehe Seite 149

Bild 320. Heißdampf-Zwilling-Lokomotive für Schnellzug- und Güterzugdienst Klasse 23 der Südafrikanischen Staatsbahnen Hauptabmessungen: Nr. 40 der Zahlentafel auf Seite 174 Kapspur

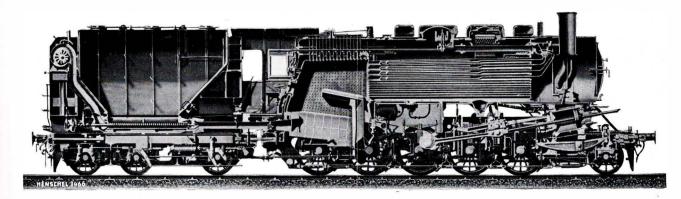
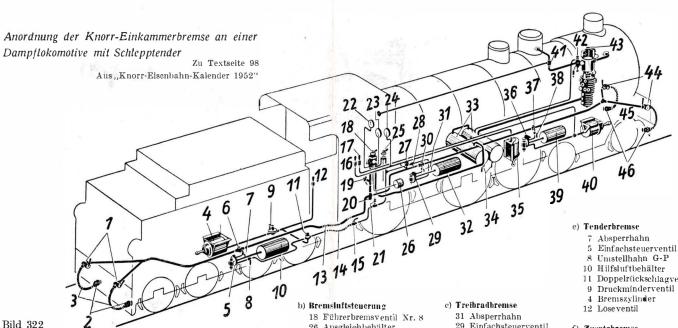



Bild 321. Heißdampf-Drilling-Güterzuglokomotive mit Stug-Feuerung, Reihe 58 der Deutschen Reichsbahn

Über Kohlenstaubfeuerung siehe Seite 239

Meterspur Seite 149

a) Bremsluftbeschaffung

- 43 Zweistufige Luftpumpe
- 42 Luftpumpendruckregler
- 41 Dampfventil
- 33 Hauptluftbehälter
- 34 Hauptluftbehälter-Ablaßhähne
- 23 Luftdruckmesser für Hauptluftbehälter

- 26 Ausgleichbehälter
- 19 Nctbremsventil
- 20 Tropfbecher
- 13 Schlauchverbindung
- 6 Schleuderfilter
- 30 Schleuderfilter
- 37 Schleuderfilter
- 1 Luftabsperrhähne
- 44 Luftabsperrhähne
- 3 Bremsschläuche
- 45 Bremsschläuche
- 2 Brems-Kupplungsköpfe
- 46 Brems-Kupplungsköpfe
- 22 Luftdruckmesser
- für Hauptluftleitung

- 29 Einfachsteuerventil
- 32 Hilfsluftbehälter
- 28 Umstellhahn G-P
- 27 Doppelrückschlagventil
- 35 Bremszylinder
- 16 Löseventil
- 24 Luftdruckmesser für Bremszylinder

d) Drehgestellbremse

- 38 Absperrhahn
- 36 Einfachsteuerventil
- 39 Hilfsluftbehälter
- 40 Bremszylinder 17 Löseventil

- 11 Doppelrückschlagventil
- 9 Druckminderventil

f) Zusatzbremse

- 25 Führerbremsventil Zb
- 21 Sicherheitsventil
- 27 Doppelrückschlagventil
- 35 Bremszylinder
- 16 Löseventil 24 Luftdruckmesser
- für Bremszylinder 14 Schlauchverbindung
- 15 Absperrhahn
- 11 Doppel-
- rückschlagventil 9 Druckminderventil
- 12 Löseventil
- 4 Bremszylinder

Wirkungsv

7. Zum K Wasser

8. Das bei

Schalld

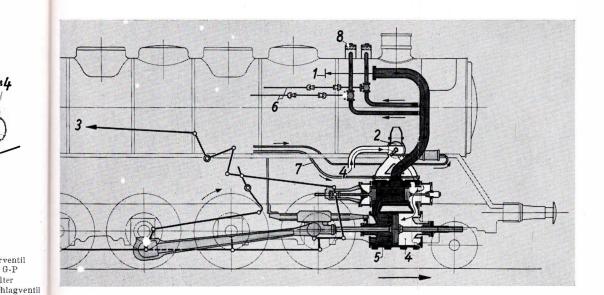


Bild 323

Gegendruckbremse Bauart Riggenbach

Zu Textseite 230

Wirkungsweise der Riggenbach'schen Gegendruckbremse

1. Regler ist geschlossen.

ventil G-P lter

ventil

ventil Zb

hlagventil

ylinder

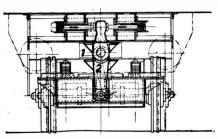
indung

rentil

ventil

ntil

- 2. Blasrohr ist abgedeckt, unmittelbare Verbindung zwischen Dampf-Ausströmrohr und Außenluft freigegeben.
- 3. Steuerung ist entgegengesetzt der Fahrtrichtung voll ausgelegt.
- 4. Kolben saugt Frischluft von außen her in den Zylinder.
- 5. Auf der anderen Kolbenseite wird die angesaugte Frischluft verdichtet, daher die Bremswirkung.
- 6. Die Bremswirkung wird durch Drosseln der ausströmenden Luft geregelt.
- 7. Zum Kühlen und Schmieren des Zylinders wird der angesaugten Frischluft Wasser zugesetzt.
- Das beim Ausströmen der verdichteten Luft entstehende Geräusch wird im Schalldämpfer gemildert.


Bedienung der Gegendruckbremse nach Anweisung der Deutschen Bundesbahn

- a) Anstellen:

 - Treibradbremse abstellen.
 Drosselventil öffnen (½ Umdrehung).
 - 3. Blasrohr schließen.
 - 4. Druckausgleicher schließen.

 - 5. Steuerung entgegen der Fahrtrichtung legen.
 6. Zylindereinspritzung mäßig ötfnen, Temperatur nicht über 300° steigen
 - 7. Bremsdruck mit Drosselventil regeln (höchstens 6 atü).
- b) Abstellen:
 - 1. Einspritzventil fest schließen.
 - 2. Drosselventil ganz öffnen.
 - 3. Steuerung sehr langsam in Fahrtrichtung legen.
 - 4. Druckausgleicher öffnen.
 - 5. Drosselventil fest schließen.
 - 6. Blasrohr öffnen.
 - 7. Treibradbremse anstellen.

397

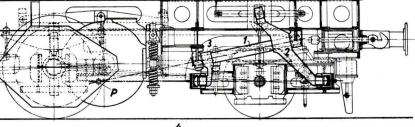
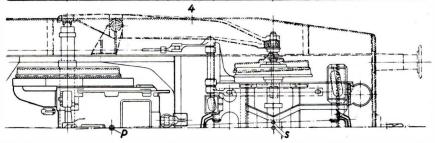



Bild 324

Henschel-Lenkgestell mit ideellem Drehpunkt

Erläuterung: Seite 74

Zahlentafel 77

Begrenzung der minutlichen Treibrad-Umdrehungen in Rücksicht auf die Dampfgeschwindigkeit im Schieberspiegel

Treibrad &		Zylinder-Durchmesser in mm																												
mm	100	110	120	130	140	150	160	170	180 19	90 2	00 21	0 220	230 :	2402	50 260	270	280 29	0 300	310	320 3	30 34	0 35	0 360	370	380	390	400	410	420 43	() 44
550- 750	2140	1760	1480	1260	1060	945	830	740	3605	90 5	30 48	5 440	403	370 3	40 316	293	272 25	3 236	222	206 1	95 18	\$5 17	3 —	_						1-
800- 950	_	-	- 1	-	_	-	_	_		_ 9	45 85	5 785	7126	6606	08 560	520	485 45	0 422	395	370 3	47 3:	28 30	8 293	276	261	249	237	225	2152	05 19
1000-1300	_			-1	=	-		-		- -		-	_	_ -				-		_ -	_ -	- 44	0 416	392	380	353	338	320	305 2	93 27
1400-1700	-	_	_	-	_		-	-		- -		_	-			_					- -		-	-	-	-	440	415	396 3	8 36
1800-2200	-	-	-	-	-	-	-	-			-:-	-	-		- -	-		-		-		-	-	_	-	-	465	425	4083	90 37
Treibrad &		Zylinder-Durchmesser in mm																												
i reibrad .					-		# Dec	E 000	- 40 -	-0-	00 55	0 500	-00	200	11000	0 400	2100	0000	0.70	CaO i	200 =	10 = 1	0.200	200	240		-00			oTen
	450 4	60 4	0 484	190	0500	510	520	530	540	000	60 91	0 380	390	000	31062	0 830	6406	50060	010	080	90 7	10 11	0 720	130	140	750	760	770	780 7	יטפוטי
mm	-	-		_	-	-	520	530	540	000	60 37	0 380	590		51062	0 830	6406	50060	670	080	90 7	00 11	0 720	130	.40	750	760	770	780 79	0 60
mm- 800- 950	1881	791	72 16	5 158	152	-	_	-	-	-	- -		_	-		_	-	-			_		-	-		750 —	760 —	- -	780 79	
	188 1 266 2	79 1 55 2	72 16 4 5 23	5 1 58 4 225	152	_ 207	199	 192	186 1	78 1	72 16	6 160	_ 153	150	— — 145 14	0 136	1321	28 124	120	117	1131	10 -			=	=	_	=	= :	Ì

Erläuterung eite 204

Voraussetzungen wie für Zahlentafel 78

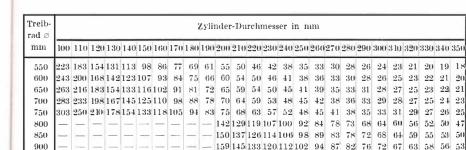
Treibrad Ø

> mm 800 850

1100

1200

1300


1400

2200

2300

Kolbenschieber von 300 mm Ø

Ľ

Treib- rad Ø mm	Zy!inder-Durchmesser in mm																								
	360	370	380	390	400	420	440	460	480	500	520	540	560	580	600	620	640	660	680	700	720	740	760	780	800
800	44	42	39	37	35	33	30	27	25	23	_	_	_			_	_	_	_	_	_	_	_		
850	47	45	42	39	37	35	32	29	26	24		-	_	-	-	-	-	-	-	-	_	_	-	-	_
900	49	47	4.1	42	39	37	33	30	28	26	_	-	_	-	-	_	-			_	-		-	-	_
950	52	50	46	43	42	39	36	32	30	27	_	_		_	_	_	-	_		- client	_			_	_
1000	78	74	72	66	64	58	53	48	45	41	38	35	32	30	28	26	25	23	22	21		-	-	-	_
1050	82	78	76	70	67	61	56	50	47	43	39	37	34	31	29	27	26	24	23	22			-	-	_
1100	86	82	79	73	70	64	58	53	50	45	42	38	35	33	31	29	27	25	24	23	_		-	-	-
1200	94	89	86	79	77	70	63	58	54	49	46	42	39	36	34	31	30	28	26	25	-	- 1	-	-	-
1300	101	96	94	86	83	75	69	62	58	53	49	45	42	39	36	34	32	30	29	27	_	-		-	_
1400	_	_	_	_	116	105	96	88	81	74	69	64	59	55	62	58	54	51	48	46	43	40	38	37	35
1500		_	_	_	124	112	103	94	87	79	74	69	63	59	66	62	58	55	51	49	46	43	41	39	37
1600	l—		_	_	133	120	110	100	93	85	79	73	68	63	69	67	62	59	55	53	49	46	44	42	40
1700	-	-	_	_	142	128	117	107	99	90	84	78	72	67	76	71	66	62	58	56	52	49	46	45	43
1800	_	_		_	153	139	126	115	107	98	91	81	94	88	83	77	71	67	62	59	55	52	_		
1900			_								_		100	93	86	82	77	71	67	63	59	55	←		
2000	l_	_	_	_									104		91	85	79	76	71	66	62	58	K	olbei	n-
2100	_	_	_	_		- 0 -					7			101		90	84	79	74	69	65	61		hieb	
2200	l_	_	_	_										109		94	87	83	77	72	67	63		n 300	
2300			_											112			92	87	82	76		68			,

- 168 153 141 127 119 108 100 93 87 81 76 71 66 62 59 56

Zahlentafel 78

Begrenzung der Höchstgeschwindigkeit in km/h mit Rücksicht auf die Dampfgeschwindigkeit im Schieberspiegel

Erläuterung auf Seite 204

Die Zahlenwerte ergeben sich aus den nmax-Werten der Zahlentafel 77 mittels der Beziehung

$$V_{max} = \frac{60 D \pi \cdot n}{1000}$$
 max in km/h

wenn D = Treibraddurchmesser in m

Voraussetzungen

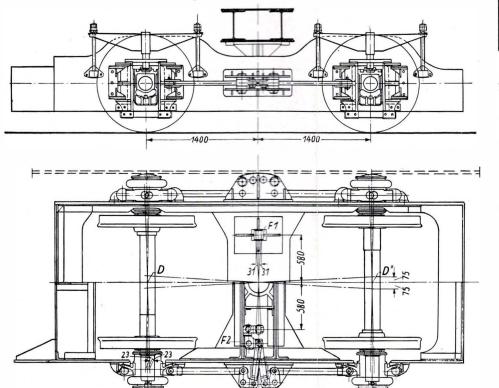
- Abmessungen der inneren Steuerung nach Zahlentafel 35. Seite 214
- 2. Antrieb durch äußere Heusinger-Steuerung
- 3. Die Höchstgeschwindigkeit tritt bei 20 % Füllung ein
- 4. Wertziffer der Einström-Dampfgeschwindigkeit

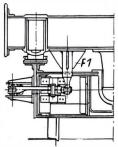
$$v = \frac{F \cdot c}{f} = 300$$
 m/sec.

bezogen auf 20 % Füllung und die Kurbelstellung, bei welcher die *mittlere* Kolbengeschwindigkeit erreicht ist (siehe Seite 204).

Soll die Höchstgeschwindigkeit erst bei 10 % Füllung eintreten, so sind die nebenstehenden Werte der Zahlentafel mit 1,43 zu multiplizieren.

tafel 78


setzungen


erspiegel

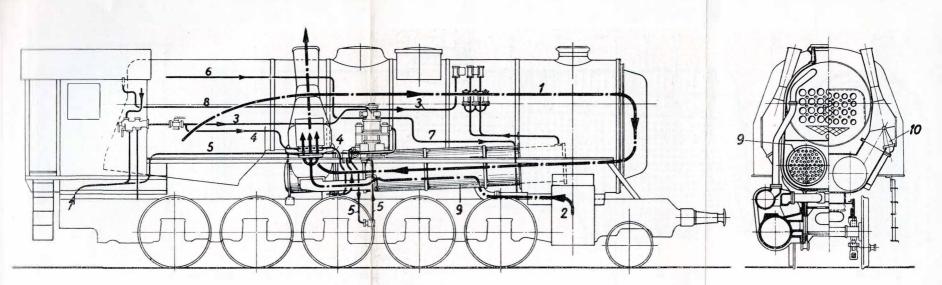
erung

950

nschieber 10 mm Ø

Zu Textseite 72

Bild 325


Liechty-Achssteuerung

Bauart Henschel an einer schweren
elektrischen Tagebaulokomotive

Die Liechty-Achssteuerung

ermöglicht zweiachsigen Fahrzeugen und Drehgestellen einen Anlaufwinkel nahe "Null" und kommt damit dem Ziel geringster Radreifenabnutzung nahe. Sie kennzeichnet sich dadurch, daß die beiden Achsen nicht starr, sondern um eine Senkrechte drehbar im Rahmen gelagert sind und im Gleisbogen zwangläufig

eingestellt werden. Die Radsätze sind bei der reinen Liechty-Ausführung in einachsigen Deichselgestellen gelagert. Ihre Lenkung wird durch die Relativbewegungen ausgelöst, die während des Bogenlaufes bei zweiachsigen Fahrzeugen das einachsige Lenkgestell, bei Drehgestellfahrzeugen das Drehgestell gegenüber dem Hauptrahmen beschreibt. Näheres in "Glasers Annalen" 1947, S. 181.

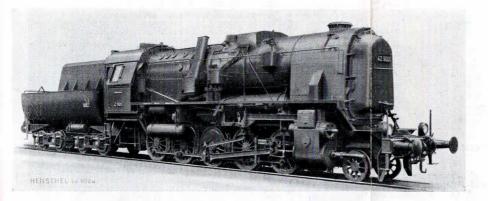


Bild 326 und 327

Zu Textseite 189

Güterzuglokomotive der Deutschen Bundesbahn mit "Franco-Crosti"-Vorwürmer
Siehe Witte: "Zwei Franco-Crosti-Lokomotiven für die DB", Glasers Annalen 1951, S. 55.

Dem üblichen Lokomotivkessel ist ein besonderer Vorwürmer-Kessel nachgeschaltet, der in zwei kleinere, seitlich oder unterhalb des Hauptkessels angeordnete Einheiten unterteilt ist. Jeder dieser kleinen Vorwärmer ist mit Schornstein und Blasrohr ausgerüstet. Sofern es die räumlichen Verhältnisse gestatten, wird ein Vorwärmerkessel unter dem Langkessel zwischen dem Lokomotivrahmen angeordnet.

- 1 Strömungsrichtung der Rauchgase
- 2 Zylinder-Abdampf
- 3 Speiseleitung für Kaltwasser (direkte Kesselspeisung)
- 4 Speiseleitung für Vorwärm-Wa ser, ausgehend vom Injektor
- 5 Speiseleitung für Vorwärm-Wasser über die Pumpe
- 6 Frischdampf für Speisepumpe
- 7 Speisepumpen-Abdampf
- 8 Hubanzeiger zur Speisepumpe
- 9 Vorwärmerkessel
- 9 Vorwarmerk
- 10 Blasrohr

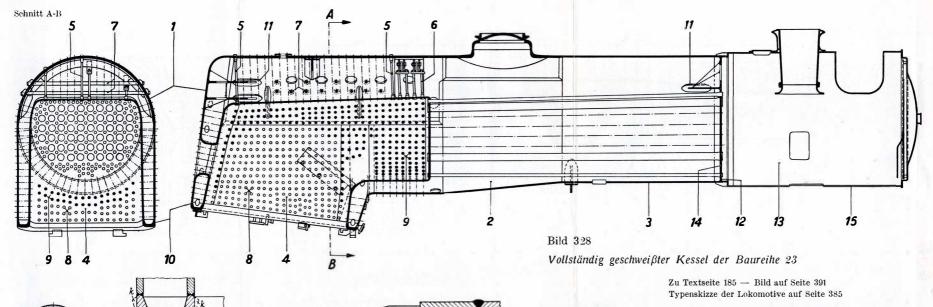
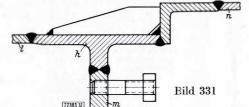



Bild 329 Stehbolzen mit Ausgleichring

Bodenring e mit Pendelstiitze o

k = abgearbeitete Kanten

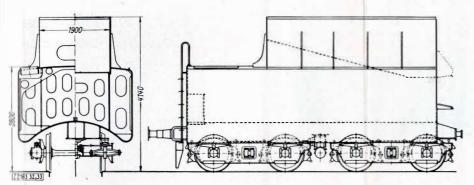
Bild 330

Verbindung zwischen Langkessel, Rauchkammer und Rauchkammerrohrwand

h = T-förmiger Ring m = Rauchkammerrohrwan l = Mantel des vorderen Kesselschusses n = Rauchkammermantel

m = Rauchkammerrohrwand

- 1 Stehkessel
- 2 konischer Kesselschuß mit Dorn Lang-
- 3 zylindrischer Kesselschuß mit Pendelblechstütze
- 4 Feuerbiichse mit Verbrennungskammer
- 5 Decken-Stehbolzen
- 6 beweglicher Deckenstehbolzen
- 7 Queranker
- 8 feste Stehbolzen

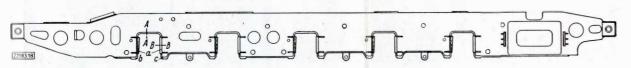

- 9 bewegliche Stehbolzen
- 10 U-förmiger Bodenring mit Bodenring-Queranker
- 11 Untersätze

kessel

- 12 T-förmiger Ring (siehe nebenstehendes Bild 331)
- 13 Rauchkammermantel
- 14 Rauchkammerrohrwand
- 15 Rauchkammerboden

Bauliche Einzelheiten zu den Einheitslokomotiven der Deutschen Bundesbahn I

Bild 329÷337 aus VD1-Zeitschrift, 1951, Seite 471


Bauliche Einzelheiten zu den Einheitslokomotiven der Deutschen Bundesbahn II

Aus VDI-Zeitschrift, 1951, Seite 472 und 474

Bild 332

Rahmenloser Leichtbau-Tender der Baureihe 23

Typenskizze der Lokomotive auf Seite 385; Abbildung auf Seite 391

Bild 333

Vollständig geschweißter Rahmen der Baureihe 82

Zu Textseite 87. Typenskizze der Lokomotive auf Seite 384 Abbildung auf Seite 359

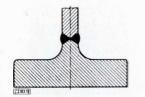


Bild 334 Rahmengurt im Ausschnitt für das Achslager

Schnitt A-A von Bild 333

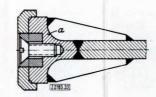
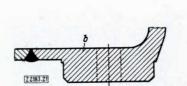



Bild 335 Achslagerführung a

Schnitt B-B von Bild 333

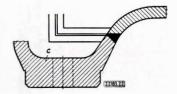
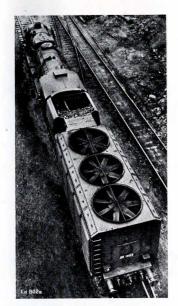



Bild 336 und Bild 337 $F\ddot{u}\beta e \ b \ und \ c \ zum \ Achsgabelsteg$

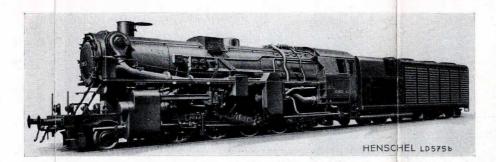


Bild 338 und 339

Reihe 52 Kon der Deutschen Bundesbahn
Schema auf Seite 405

Henschel-Patent-Kondens-Lokomotiven

Zu Textscitc 244

Siche ferner Seite 405 und 407

Bild 34●

Heißdampf-Zwilling-Güterzug-Lokomotive der Argentinischen Staatsbahnen

Meterspur

Hauptabmessungen: Nr. 36 der Zahlentafel auf Seite 174

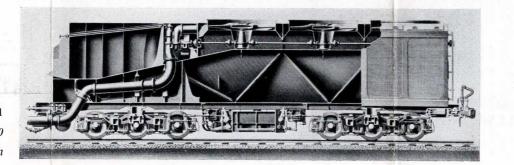


Bild 341 Versuchstender zu Klasse 20 der Südafrikanischen Staatsbahnen

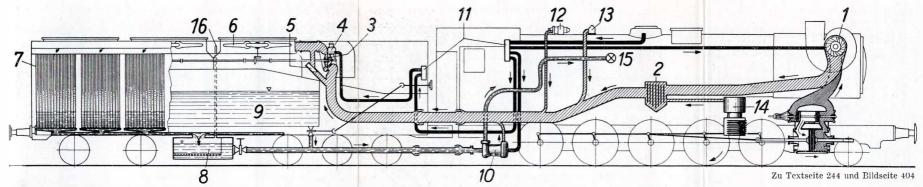
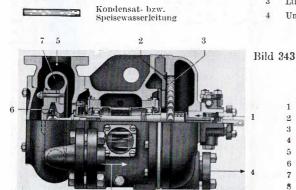



Bild 342. Henschel-Kondens-Lokomotive Reihe 52 Kon der Deutschen Bundesbahn

Frischdampfleitung

Abdampfleitung

Henschel-Kreiselpumpe zum Speisen des Kessels Zu Textseite 191

- Saugzuggebläse
- Abdampfentöler
- Lüfterturbine

Dampfeintritt Dampfdüse Turbinenlauf rad Turbinenahdampf

Wasserzulauf

Druckraum

Druckstutzen

Umleitventil

- Abdampfnebenleitung
- Lüfterrad
- Kondensatelement
- Kondensatbehälter mit Sieb

- Rohwasserbehälter
- Turbospeisepumpe
- Armaturenstutzen

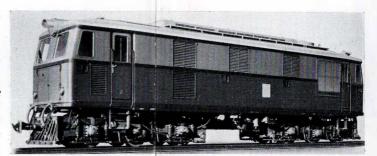
Luftpumpe Kesselspeiseventil

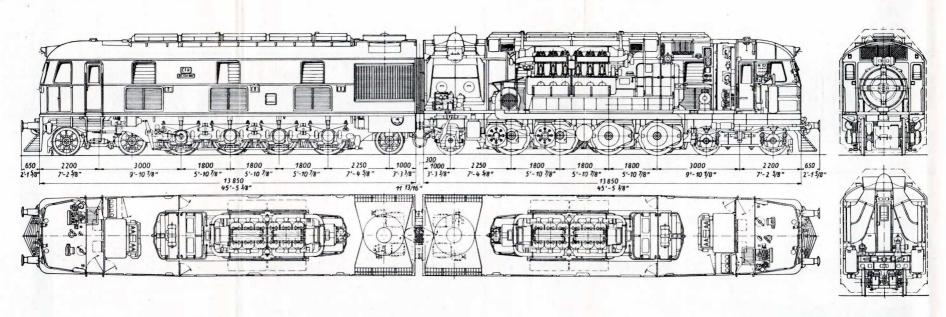
Lichtmaschine

Entlüftungsrohr

Sicherheitsventil

Bild 344


Dieselelektrische (960 PS) (A1A) (A1A) Lokomotive


Pumpenlaufrad der Siamesischen

Staatsbahnen

Meterspur

(siehe Zahlentafel auf Seite 282)

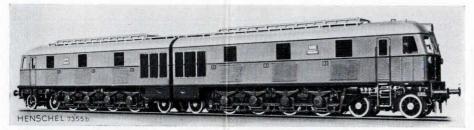
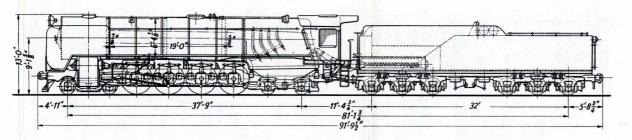



Bild 345

Diesel-elektrische 4400 PS-Schnellzuglokomotive der Rumänischen Staatsbahnen Hauptabmessungen: Nr. 22 der Zahlentafel auf Seite 282

> Gemeinschaftsarbeit der Firmen Gebr. Sulzer AG, Winterthur; BBC, Baden (Schweiz) und Henschel & Sohn GmbH, Kassel

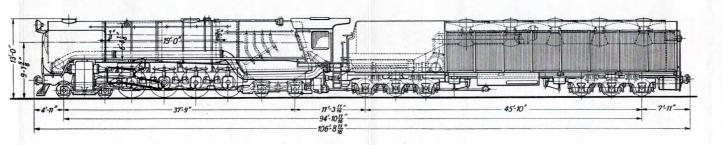


Bild 346

Heißdampf-Zwilling-Lokomotive für Personen- und Güterzug-Dienst, Klasse 25 NC der Südafrikanischen Staatsbahnen (Non-condensing engine)

Kapspur

Hauptabmessungen: Nr. 43 der Zahlentafel auf Seite 174

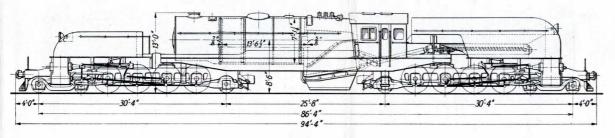


Bild 347

Henschel-Patent-Kondensations-Lokomotive, Klasse 25 der Südafrikanischen Staatsbahnen

Kapspur

Zu Textseite 244 und Bildseiten 404/5

Bild 348

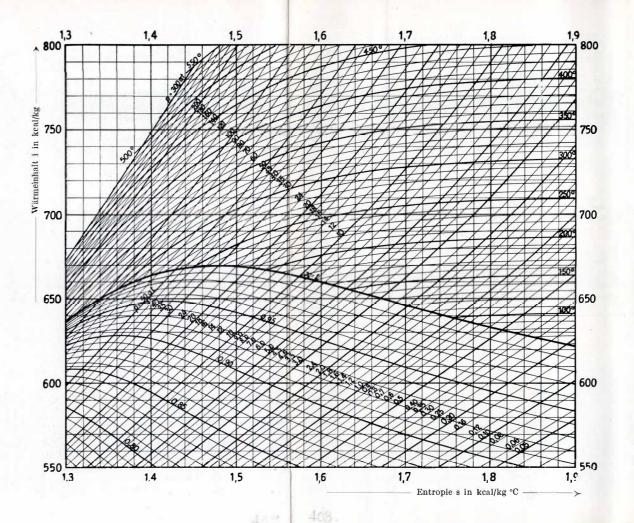
Heißdampf-Doppelzwilling-Güterzug-Tenderlokomotive Bauart Beyer-Garratt, Klasse GM der Südafrikanischen Staatsbahnen

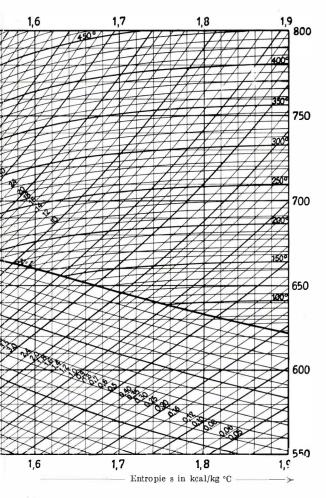
Kapspur

Hauptabmessungen: Nr. 60 der Zahlentafel auf Seite 170

Bild 349

Ausschnitt


aus dem


Mollier (i,s)-Diagramm

zu den

VDI-Wasserdampftafeln

Wasserdampftafeln auf den Textseiten 127-130

TYSICLAND 3D

Vilhelm Priors kgl. Hofboghandel

Købmagergade 52

Telf. 1579, 1580 · Postkonto 3742

• Kunstbøger • Papir • Modelteatre

Hr. civilingeniør Lundsfryd

Vejrøgade lo Ø.

S	Følgeseddel	19 / lo 1953	Kr.	Øre
1	Henschel- Lol	komo ti v-		
	Taschenbuch		22	20
		RETAI	-	

VILHELM PRIUN'S

No

7589